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Abstract  In this study, the capability of Unmanned Aerial Vehicle (UAV) optical data to provide reliable 
topographic and as-built information was tested using the eBee Sensefly UAV system. The Object-based Image 
Analysis (OBIA) technique was used to extract important geospatial information for mapping. The robust Taguchi 
method was adopted to optimise the segmentation process. Feature space optimisation method was used to obtain the 
best features for image classification utilising different supervised OBIA classifiers, such as K-nearest neighbour 
(KNN), normal Bayes (NB), decision tree (DT), random forest (RF) and support vector machine (SVM). Results 
showed that SVM obtained the highest percentage of overall accuracy, followed by RF, NB, DT and KNN at 
97.20%, 95.80%, 93.14%, 86.01% and 77.62%, respectively. The McNemar test was implemented to analyse the 
significance of the classifier results. The as-built information showed that dimensional accuracy was less than 1 
metre compared with ground survey measurement. We conclude that the combination of UAV and OBIA provides a 
rapid and efficient approach for map updating. This technique could replace the current procedure that utilises 
piloted aircraft and satellite images for data acquisition and reduce the time for digitising each feature that represents 
land cover for urban mapping. 
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1. Introduction 

A topographic map provides important information that 
represents data on land use and land cover for certain 
areas. It is a 2D representation of the Earth’s 3D landscape. 
Topographical data also provide an accurate measured 
plan of a site that encompasses the entire range of various 
feature information with detailed illustration of man-made 
and natural features on the ground, such as road, railways, 
rivers, lakes and buildings. Typically, a topographic map 
is used as a skeleton for design work before a construction 
project begins to address the requirements of land survey, 
urban planning, as-built planning, hazard assessment and 
disaster risk management. 

In the time frame of a mapping survey, a dataset of the 
topographic map is gathered from platforms, such as 
space-borne satellites and manned aircraft. Most of the 
data are acquired by equipment that are too expensive to 
build and maintain for small-area map updating. In 
addition, the data are not always within the public domain. 
The process of acquiring aerial mapping is expensive 

given the constraint and requirement to map small areas 
and using large-format aerial or metric cameras to acquire 
data is uneconomical and unsuitable [1]. 

Unmanned Aerial Vehicle (UAV) system operates  
a powered aerial vehicle without a human operator.  
UAVs are prominent due to their provision of data with  
high spatial resolution [2], lightweight sensors and 
platforms, flexibility of flight planning and deployment 
and elimination of long dependency [3]. UAVs could also 
obtain timely imagery of areas that are dangerous or 
difficult to access by traditional means. This imagery can 
usually be acquired at a minimum cost or at a cost that is 
cheaper than that involved in other collection methods 
[2,3,4]. Current users prefer technologies with low cost 
but numerous benefits. UAVs are an example of such 
technologies because they provide highly applicable, 
immediate and near-real-time data at a resolution that is 
comparable to that of terrestrial means. UAVs, such as 
eBee Sensefly are an excellent technology that can 
provide high capability data for mapping purposes [5]. 

The features from aerial photo orthomosaic are normally 
detected and digitised manually from visual interpretation 
for mapping purposes. However, these methods consume 
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much time, are tedious and expensive [6]. Automation will 
provide substantial benefits [4]. The level of automation 
could range from semi-automatic incorporated with human 
interaction to completely automated [7]. The potential  
of acquiring accurate and low-cost UAV data relies on 
automatic object reconstruction and boundary extraction 
activities [8]. 

Pixel-based images analysis are often used to extract 
low-level features. However, an image is classified 
according to spectral information, and the pixels in the 
overlapping region are misclassified; the salt-and-pepper 
problem thus emerges in the classification result [9]  
and causes confusion among classes [10]. Meanwhile, 
Object-based Image Analysis (OBIA) is used to extract 
high-level features, which constitute shapes in images  
that are detected regardless of illumination, translation, 
orientation and scale [7].  

Object-based classification for high-spatial-resolution 
UAV data encounters several challenges despite its highest 
accuracy among all types of sensors [11]. The scale 
parameters used for segmentation are much larger than those 
used for aerial and satellite imagery. The extreme detail on 
the imagery parses it into many different objects with 
varying spectral, morphological and proximity characteristics.  

Most segmentation processes use trial and error, which 
is subjective, laborious and time consuming [10]. Hence, a 
solution to optimise the segmentation process for 
classification is required. The Taguchi method, which was 
designed by Dr. Genichi Taguchi, has a simple statistical 
tool design [12]. This method involves a tabulated design 
(arrays) system that permits a maximum number of main 
effects to estimate in an unbiased manner with the lowest 
number of experimental runs [13]. Several studies had 
applied this method to optimise the segmentation process 
in OBIA [10,14,15,16]. 

Most of the studies have utilised UAV data to produce 
topographic (DTM, DSM, orthophoto) [17] and land cover 
maps [11,18,19,20]. However, the data are not fully 
utilised for as-built plan information. A few studies have 
highlighted infrastructure information using other sensors, 

such as satellite image and aerial laser scanner, for 
building extraction [21,22,23,24]. 

Therefore, the first objective of this study is to assess 
the capability of UAV to provide reliable topographic and 
as-built data information by utilising the OBIA technique. 
Specifically, the aim is to determine the most optimal 
OBIA parameters through segmentation and classification 
to deliver the required information from UAV data. The 
segmentation process is important for object classification 
intended for object-oriented image analysis. This study 
investigated the effect of parameter tuning with different 
sample numbers on the overall accuracy of the results  
to determine the optimal parameter. Machine learning 
classifiers were used. The second purpose is to extract 
topographic information, such as land cover features,  
from UAV data. Lastly, the study aims to extract  
as-built information, such as infrastructure geometry and 
dimensions. The geometry from OBIA data was compared 
from ground truth survey data using a high-accuracy total 
station equipment.  

2. Data and Methods 

2.1. Study Area 
The study area is situated at the National Land and 

Survey Institute (INSTUN) in Behrang, Ulu, Tanjung 
Malim, Perak, Malaysia. The total area of this campus is 
approximately 200 acres. The area of research interest is 
limited between latitudes 3° 45’ 58.3’ N to 3° 46’ 2.16’ N 
and longitudes 101° 30’ 34.94’ E to 101° 31’ 26.01’ E, 
with a total area of 0.3628 km2. The study area is 
surrounded by man-made infrastructures, such as buildings, 
roads, drainages, sport courts, concrete benches, pavements 
and parking lots. Natural features, which are dominant, 
include bare soil, dead grass, grass lands, sand, crops, 
shrubs and trees. Other features include water bodies, such 
as swimming pool, lakes, septic tanks and shadows from 
tall buildings and trees. 

 
Figure 1. Study area in INSTUN, Perak, Malaysia 
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2.2. Methodology 
The methodology of this research was divided into three 

phases as shown in Figure 2. The initial phase relied on 
the acquisition of data from the eBee Sensefly UAV. The 
orthorectified images were generated using photogrammetric 
technique. Then, an object-based image analysis, which 

involved image segmentation, selection of training and 
testing samples, image classification, feature selection, 
tuning parameter setting for each classifier and accuracy 
assessment, was performed. All related data, such as digital 
surface model (DSM), digital terrain model (DTM), contour 
line, image classification output for generating topography 
map and as-built plan and information, were combined. 

 
Figure 2. Research methodology flowchart 
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2.2.1. Phase 1 - Data Acquisition: Pre-processing of 
UAV Image 

The imagery data were obtained on October 18, 2016 
using eBee Sensefly UAV. The camera sensor, which is 
attached on this model, is Canon 16 MP IXUS with a 
visible colour band (red, green, and blue). During data 
acquisition, the side lap was 60%, and 80% of the  
front overlap had been set. The altitude of the UAV was 
set to 190 m above the ground level. The data were tied 
with six control points (benchmark and EDM calibration 
pillars). 

The quality check on georeferencing showed that the 
mean RMS error was 0.025 m. The entire data were set 
geometrically with the coordinate system WGS84 datum 
and 47N zone in UTM projection. Raw images were 
mosaicked to generate an orthorectified image that 
covered the entire study area by using photogrammetry 
software Pix4D. The average ground sampling distance 
(GSD) through this orthorectified image was 5 cm. Seven 
classes of features were organised and investigated as 
follows: (1) soil/sand, (2) urban tree, (3) building/roof,  
(4) impervious surface (other infrastructures), (5) grassland, 
(6) water body and (7) shadows. 

An orthomosaic image with the DSM, DTM and 
contour line was generated (Figures 3(a–d)) using Pix4D. 
The image was subjected to automatic radiometric and 
geometric correction. 

 
Figure 3a. Orthomosaic 

 
Figure 3b. DTM 

 
Figure 3c. DSM 

 
Figure 3d. Contour Line (1m) 

2.2.2. Phase 2 - Segmentation and Classification 
The initial and most important process during the 

implementation of the OBIA technique is the segmentation to 
divide an image into meaningful sections that are correlated 
to objects in the real world, as shown in the image [25]. 
Multi-resolution segmentation is a type of bottom-up, 
region-based segmentation algorithm [26] and is applied 
using the software e-Cognition version 9.0. Image 
classification accuracy is promptly controlled with the 
quality of the segmentation, which is in turn controlled by 
defined parameters [27]. The three parameters in the 
multi-resolution segmentation process are as follows: 
scale, shape and compactness.  

The most effective parameter that affects the average 
image object size is the scale factor [25,28,29]. This factor 
is controlled by the spatial resolution of the image and 
features [9,12]. Shape and compactness factors are 
associated with colour density and smoothness. Then, the 
amount of spectral information that should be aggregated 
to build the segments is identified [14]. Initially, to obtain 
the best range of the scale parameter for image 
segmentation, a trial and error process was conducted in 
this work. The selected scale on segmentation was further 
optimised by applying the Taguchi method. 

The segmentation process began with defining the 
possible range of multi-resolution segmentation parameters 
to identify the pertinent value of the scale and homogeneity  
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parameter. The analysis was performed with different 
scale factors at 5, 25, 50, 75, 100, 125, 150, 175, 200 and 
225. Visual interpretation was performed to identify the 
reliability of the segmented image. The main criterion was 
that the image object was under-segmented, and the  
over-segmented image object is eliminated. Previous 
studies [17,25,30] have consistently emphasised the scale 
parameter while the other factors remained constant. The 
shape parameter was set to 0.1, and compactness was set 
to 0.5 in all 10 preliminary tests to generate meaningful 
segmented objects. Both parameters used these default 
values for image segmentation. 

The five best results of preliminary segmentation were 
identified via visual interpretation. The advantages of the 
Taguchi method include minimising the number of 
experiments [15] by adopting a fractional functional design 
and maintaining a consistent and simple experimental 
design. This system approach can significantly reduce the 
total testing time and experimental cost [31]. The Taguchi 
orthogonal array disperses the parameter equally, and the 
column depicts independent orthogonal variables to 
guarantee an impartial comparison of all variables in each 
level and to examine each parameter separately [32]. The 
experiment uses an orthogonal array within each pair of 
columns that corresponds as independent variables. Level 
combination exists in an equal number of times [13,14,33]. 

The orthogonal array design by Taguchi is limited to 
only the combinations of 25 experiments with 3 varying 
main parameters rather than considering 125 (5x5x5) 
experimental probabilities. The Taguchi orthogonal array 
was applied here using Minitab v.17 software. Prior to 
undertaking the statistical Taguchi optimisation, five 
levels of the three parameters were defined, as illustrated 
in the following table. 

Table 1. Level for segmentation parameters 

PARAMETER 
LEVEL 

1 2 3 4 5 

Scale 25 50 75 100 125 

Shape 0.1 0.3 0.5 0.7 0.9 

compactness 0.1 0.3 0.5 0.7 0.9 

 
Then, the statistical Taguchi method and the spatial 

objective function were fused in a particular process to 
optimise the segmentation parameters [33,34]. The idea of 
combining statistical and spatial (objective function) 
optimisation methods in a particular process is to model 
the optimal parameters that guarantee an acceptable 
quality of segmentation [14]. The objective function is 
accomplished with the fusion of spatial autocorrelation 
and variance indices to identify relevant segmentation [35]. 
Spatial autocorrelation implies the level of distinctiveness 
between regions (heterogeneity). The variance indicator 
shows the uniqueness (homogeneity) of the pixels in a 
single segment [34]. Hence, the condition of good-quality 
segmentation with the consequences of intra-segment 
homogeneity and inter-segment heterogeneity is strictly 
maximised [14]. 

The first element computed is the intra-segment variance 
of the regions created by a segmentation algorithm using 
the equation 1 [34]. 

Intra-segment variance, 
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where ɑi and vi refer to area and variance respective to 
region i, respectively. Intra-segment variance v is a weighted 
average, where the weights are the areas of each region. 
The second element assessed is intersegment heterogeneity. 
The function employs Moran’s I autocorrelation index 
[36]. It quantifies the degree of spatial affiliation as 
reflected in the data as a unit [34]. 

Moran’s I index is expressed as follows: 
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where n represents the total number of regions and wij is 
the spatial weight between objects i and j. yi is the mean 
grey value of region Ri, and ȳ is the mean grey value of 
the image (1 for adjacent regions and 0 otherwise). The 
test was executed, and the corresponding plateau objective 
of function (POF) was computed for each test based on the 
combination of parameter level in the orthogonal arrays. 
The test with the highest result of POF revealed the best 
performance and was marked as the strength of the quality 
of optimisation [34]. The objective function (F) was 
combined with the within-segment variance (v) measure 
and the between-segment autocorrelation of Moran’s I 
index (I) [34]. It can be expressed as follows: 

 ( , I) F( ) (I)vF v F= +  (3) 

where F(v) and F(I) are the normalisation functions. 

 max
max min
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−= −  (4) 

Subsequently, the signal-to-noise (SN) ratio was employed 
to model the optimal segmentation parameters. The three 
types of SN ratio analysis were applied as follows:  
(1) lower is better (LB), (2) nominal is the best and  
(3) higher is better (HB). The aim of this experiment was 
to optimise the segmentation parameter for image data. 
Hence, the HB category of the SN ratio was used  
for modelling. The SN ratio for each experiment  
was calculated using mean value yi and variance si  
by determining the effect of each variable. It can be 
expressed as follows [14]: 
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where ȳ is the mean and si refers to variance as denoted by 
the equation. 
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In Equations (6) and (7), i is the number of experiments, 
u is the trial number and Ni is the number of trials in 
experiment i. The average SN ratio was employed to 
evaluate the result of each experiment. A high SN ratio 
denotes the optimal parameter segmentation based on 
Equation (8). The average of the SN value for each level 
and factor was derived. Then, the result was exported as a 
table and a graph. 
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Seven classification classes were identified and are 
illustrated in Table 2. 

The training and testing samples were selected randomly 
based on experience from ground truth assessment data on 
the study area. The sample was divided into five parts to check 
the classification accuracy and to examine the influences 
of classifiers on the sample size; 70% of the sample was 
used for training and 30% for testing. Each training and 
testing sample was selected differently to ensure that no 
repeated sample was selected for accuracy assessment. 

An assessment using different numbers of samples for 
training and testing was also conducted by tuning the 
parameter for each classifier while excluding NB to obtain 
the relationship with the various parameters being set for 
optimising the classification result. The different numbers 
of samples for each class were selected randomly due to 
different areas for each class. The soil/sand class with the 
highest number of object classes was selected, followed 
by urban tree, building/roof, grassland, impervious surface, 
water and shadow, as shown in Table 3. 

After selecting the training sample, spectral and spatial 
features were required to classify the image. Feature space 
optimisation (FSO) tools, which are available in e-Cognition 
software, were used for feature selection. More than hundreds 
of features are available for classification. A total of 41 
features were selected for FSO to identify the appropriate 
features for further classification [18]. The object features 
were used and processed for further analysis with different 
training and testing sizes. The features were divided into 
shape, texture and spectral properties. The values of best 
separation distance for samples 1, 2, 3, 4 and 5 were 3.975, 
2.545, 2.166, 2.063 and 1.882, respectively. Sample 1 
with 100 training data samples had the highest separation 
distance compared with the other data samples. 

Five machine learning classification algorithms that are 
K-nearest neighbour (KNN), normal Bayes (NB), decision 
tree (DT), random forest (RF) and support vector machine 
(SVM) were used and tested thoroughly to evaluate their 
performance under varying conditions and to optimise 
their applicability in terms of the OBIA technique. To 
optimise the parameter for each classifier, several tests 
were performed by tuning the parameter for each classifier, 
except for NB with one available parameter for adjustment. 
The sensitivity of each classifier was examined using the 
selected training and testing samples by referring to the 
results of the accuracy assessment and by varying their 
respective parameters.  

NB is a simple technique for constructing classifiers by 
applying the Bayes theorem (Bayesian statistics) [37]. It is 
not a single algorithm for training classifiers; it is a family 
of algorithms based on a common principle. The NB 
classifier assumes that the value of a particular feature is 
independent. The data distribution function with one 
component per class is assumed to be a Gaussian mixture. 
The algorithm estimates the mean vectors and covariance 
matrices of the selected features for each class for 
classification. The advantage of the NB classifier is that it 
does not require any parameter to tune, which could be 
subjective and time consuming. 

The KNN algorithm is a method for classifying objects 
based on closest training examples in the feature space. 
KNN is a non-parameter algorithm for instance-based 
learning or lazy learning [38]. An object is classified by 
referring to the class attributes of its KNN parameters. 
Therefore, K is the key tuning parameter in this classifier, 
and it is largely determined the performance of the KNN 
classifier [37]. In this study, the K values varied from 5 to 
20 with 5 intervals each to identify the optimal K value for 
all training sample sets. 

DT learning is a method used in data mining, in which  
a series of decisions are made to segment data into 
homogeneous subgroups. The aim is to create a model that 
predicts the value of a target variable based on several 
input variables. This process is repeated on each derived 
subset in a recursive manner (recursive partitioning). The 
recursion is completed when the subset at a node has the 
same value as the target variable or when splitting no 
longer adds value to the predictions. The purpose of 
analyses via tree-building algorithms is to determine a set 
of if–then logical (split) conditions [38]. During this study, 
we tested the value of maximum depth from 1 to 20 for all 
five training samples. The other parameters, such as cross 
validation folds and min sample count, were set to 10 
(default). Other factors remained constant. 

Table 2. Types of image classification 

NO. NAME OF CLASSES DESCRIPTION 

1 Soil/Sand All bare sand/soil and/or very/dead grasslands 

2 Urban Tree All type of crop, shrub, bush, oil palm tree species canopies 

3 Building/Roof All different size building or roofs with different material cover 

4 Grass Land All type of grass lands 

5 Other Infrastructures (Impervious Surface) All impervious surface areas e.g. road, park lots, pavement, tennis court, volleyball court, 
bench, jetty, drainage, sump 

6 Water All different types of water bodies (lake, swimming pool, septic tank) 

7 Shadow All shadows from building, tree (light and dark shadow) 

 



109 Journal of Geosciences and Geomatics  

RF, also referred to as random tree, is an ensemble of 
decision trees [37]. The random tree classifier is more of a 
framework than a specific model. It uses an input feature 
vector and classifies it with every tree in the forest.  

It results in a class label of the training sample in the 
terminal node, where it ends [38]. The value of the 
maximum depth was set from 1 to 20 for all five training 
samples in this study. The other parameters, such as cross 
validation folds and min sample count, were set to 10 
(default).  

SVM constructs a hyperplane or a set of hyperplanes in 
an infinite dimensional space, which can be used for 

classification and regression analysis. The most frequently 
used types of kernel functions or SVM algorithms are 
linear, polynomial and radial basis functions (RBF) and 
sigmoid kernels [37]. In this study, the RBF kernel, which 
is the most frequently used and has been proven superior 
to other kernels, was adopted. The RBF kernel has two 
important tuning parameters: cost (C) and Gamma. The 
optimal values of C and Gamma are often estimated with 
the exhausted search method. We systematically tested 
five different values of C and Gamma to examine the 
effect of these two key parameters on the performance of 
SVM within the object-based approach. 

Table 3. Tabulation of training and testing sample objects for each class 
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SAMPLE 1 27 12 23 10 17 7 13 6 10 4 7 3 3 1 100 43 

SAMPLE 2 53 23 47 20 33 14 27 11 20 9 13 6 7 3 200 86 

SAMPLE 3 80 35 70 30 50 21 40 17 30 13 20 9 10 4 300 129 

SAMPLE 4 107 46 93 39 67 29 53 23 40 17 27 11 13 6 400 171 

SAMPLE 5 133 57 117 50 83 36 67 29 50 21 33 14 17 7 500 214 

 
2.2.3. Phase 3 - Accuracy Assessment 

Object-based accuracy assessment is a measure of a 
statistical output to confirm the quality of classification 
results. The method that is most often used to assess 
accuracy is based on an error matrix. It utilises appropriate 
accuracy measures to compare different classification 
techniques [39,40]. An error matrix is a cross tabulation of 
the classes of the classified imagery and reference  
data. It offers a form of site-specific assessment of the 
correspondence or accuracy degree of the classified image 
and the objects in the site [40]. In general, overall 
accuracy, producer accuracy, user accuracy and kappa 
coefficient are computed from an error matrix [41].  

McNemar test was performed to examine the role of 
each classifier. This test identifies a change in the 
proportion of the paired data to determine whether the 
statistical differences in classification accuracies are 
quantitatively significant [42]. This statistical test uses a 
non-parametric approach based on the statistics of a 2 × 2 
matrix [43]. The assessment relies on chi square (x2) 
distribution and indicates the statistical differences by 
measuring the z score under the null hypothesis that 
classification is different. A z score > 1.645 shows the 
confidence level at 95% quantitative significance (p-value 
of 0.05) with one degree of freedom [43]. The McNemar 
test represents the statistical difference by measuring a z 
score under the null hypothesis that the classifications are 
different. The formula is expressed as follows: 
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where f12 and f21 indicate the number of ground truth  
data samples accurately classified in a set of classification 
but inaccurately classified in another classifier. These 
values are extracted from the data obtained from  
the classified image performed by classifiers 1 and 2  
[44].  

Three classes of land cover, including building/roof and 
impervious surface (drainage, road), were selected for as-
built geometrical assessment. Ground truth data were 
collected using survey equipment, such as total station for 
the area. The area of assessment was selected as the area 
of staff quarters in INSTUN. 

3. Results and Discussions 

3.1. Results of Preliminary Segmentation 
Figure 4(a) to Figure 4(i) show the result of the 

preliminary segmentation using the trial and error method. 
The result shows that the scale parameters of 25, 50, 75, 
100 and 125 results in relevant and acceptable segmentation 
against other under-segmented objects for the seven 
selected classes. The result was selected based on the 
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criterion of segmented images, that is, an acceptable 
under-segmented area with a minimum number of  
over-segmented and under-segmented objects. Therefore, the 

five best segmentation results with different scale parameters 
were selected for further optimisation segmentation using 
the Taguchi method. 

 
Figure 4a. (scale: 5) 

 

 
Figure 4b. (scale: 25) 

 

 
Figure 4c. (scale: 50) 

 
Figure 4d. (scale: 75) 

 

 
Figure 4e. (scale: 125) 

 

 
Figure 4f. (scale: 125) 
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Figure 4g. (scale: 150) 

 
Figure 4h. (scale: 175) 

 
Figure 4i. (scale: 200) 

 
Figure 4j. (scale: 225) 

Table 4. Calculation of the plateau of function 
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T1 25 0.1 0.1 292,213 284130067.530 2.249 0.616 1.000 0.474 1.474 
T2 25 0.3 0.3 287,426 298346842.852 2.361 0.648 0.943 0.392 1.335 
T3 25 0.5 0.5 260,712 323533915.878 2.561 0.695 0.841 0.271 1.112 
T4 25 0.7 0.7 234,312 357738466.997 2.831 0.717 0.703 0.216 0.920 
T5 25 0.9 0.9 218,477 402621039.637 3.187 0.801 0.522 0.000 0.522 
T6 50 0.1 0.3 87,752 328136522.871 2.597 0.537 0.823 0.678 1.500 
T7 50 0.3 0.5 85,306 348098896.005 2.755 0.590 0.742 0.5411 1.283 
T8 50 0.5 0.7 77,416 378344200.146 2.994 0.595 0.620 0.528 1.148 
T9 50 0.7 0.9 70,892 414181950.923 3.278 0.627 0.476 0.447 0.923 
T10 50 0.9 0.1 34,039 441788694.166 3.497 0.660 0.364 0.362 0.726 
T11 75 0.1 0.5 43,599 355906725.097 2.817 0.492 0.711 0.791 1.502 
T12 75 0.3 0.7 41,928 381758887.938 3.021 0.539 0.606 0.673 1.279 
T13 75 0.5 0.9 38,796 414811875.785 3.283 0.540 0.473 0.671 1.143 
T14 75 0.7 0.1 25,934 419955643.806 3.324 0.552 0.452 0.639 1.091 
T15 75 0.9 0.3 17,682 481076393.238 3.807 0.572 0.206 0.588 0.794 
T16 100 0.1 0.7 26,753 377440063.122 2.987 0.447 0.624 0.907 1.530 
T17 100 0.3 0.9 25,778 409356725.481 3.240 0.467 0.495 0.857 1.352 
T18 100 0.5 0.1 20,111 412286184.941 3.263 0.513 0.483 0.737 1.221 
T19 100 0.7 0.3 15,637 447083102.610 3.538 0.493 0.343 0.790 1.133 
T20 100 0.9 0.5 11,949 509986184.541 4.036 0.527 0.089 0.702 0.791 
T21 125 0.1 0.9 18,389 396797572.505 3.140 0.411 0.546 1.000 1.546 
T22 125 0.3 0.1 16,072 407003727.068 3.221 0.433 0.505 0.943 1.447 
T23 125 0.5 0.3 13,728 432107332.699 3.420 0.442 0.403 0.920 1.324 
T24 125 0.7 0.5 10,878 470710222.563 3.725 0.430 0.248 0.951 1.199 
T25 125 0.9 0.7 9,029 532115563.727 4.211 0.493 0.000 0.791 0.791 
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3.2. Results of Optimised Segmentation Using 
the Taguchi Method 

Table 4 shows the result of each test in which several 
equations were evaluated to identify the optimised 
parameter for image segmentation. Refer to Table 4, it 
shows that the highest score for POF was the combination 
of scale, shape and compactness in levels 5, 1 and 5, 
respectively, with a score of 1.546. Further interpretation 
of the table reveals that a POF value with the highest POF 
in a pattern is in agreement with the analysed SN ratio 
result [14]. The hybrid strategy slightly carried the 
orthogonal vectors and POF to calculate the SN ratios. 

Figures 5(a) and 5(b) present the main effect plots of 
the means and SN ratios for multi-resolution segmentation. 
The response table for mean and SN ratio obtained  
from the analysis of the Taguchi method is presented in 
Tables 5a and 5b. The result shows that the optimum 
combination yielded the highest value of SN ratios and 
means with the associate of level 5 (125) for scale, level 1 
(0.1) for shape and level 2 (0.3) for compactness. 

Table 5a. Response table for mean 

LEVEL SCALE SHAPE COMPACTNESS 
1 1.0726 1.5105 1.1919 
2 1.1162 1.3393 1.2171 
3 1.162 1.1896 1.1774 
4 1.2054 1.053 1.1337 
5 1.2613 0.7249 1.0973 

Delta 0.1887 0.7856 0.1198 
Rank 2 1 3 

Table 5b. Response table for SN ratio (larger is better) 

LEVEL SCALE SHAPE COMPACTNESS 
1 0.08617 3.58125 1.25871 
2 0.6831 2.52891 1.50894 
3 1.118 1.49106 1.23246 
4 1.41904 0.39794 0.85407 
5 1.79329 -2.89954 0.24543 

Delta 1.70712 6.48079 1.26351 
Rank 2 1 3 

 
Figure 5a. Main effect plot (data means) 

 
Figure 5b. Main effect plot (SN ratio) 
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Figure 6a. Building & bare soil 

 
Figure 6b. Road 

 
Figure 6c. Water bodies & grassland 

 
Figure 6d. Urban tree 

 
Figure 6e. Volleyball court (Impervious Surface) 

 
Figure 6f. Shadow 

 
Figure 6g. Bare soil & grassland 

 
Figure 6h. Water bodies & Jetty (Impervious Surface) 
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Visual judgement confirmed that the optimised 
segmentation parameters yielded the utmost results after 
applying the Taguchi method, as shown in Figure 6(a) to 
Figure 6(h). Therefore, the merging of the statistical and 
spatial optimisation processes creates intrinsic sensitivity 
to the image pixels and their spatial relationship. The 
strength of these properties is utilised to obtain the desired 
quality.  

3.3. Results of Image Classification 

3.3.1. Effects of Parameter Tuning of the Classifiers 
The tuning parameter of the classifier tremendously 

influenced the classification accuracy. The SVM classifier 
showed high impact and sensitivity to the tuning 
parameter, with a variation of up to 60% for each data 
sample from the result of minimum to maximum overall 
accuracy. The variation of KNN showed decreasing 
accuracy with increasing K parameter for all data samples; 
it is different from the RF classifier, in which the turning 
point is at the maximum depth parameter of 15. When the 
depth was more than 15, the overall accuracy suddenly 
decreased for all data samples. For DT, the trends showed 
increasing overall accuracy with the increase in the 
maximum depth parameter for all data samples. However, 
most of the data samples provided the highest result as the 
parameter reached 20.  

Therefore, the optimal parameter setting for SVM 
varied with the data sample size. The optimum values for 

C and Gamma were 100,000 and 0.001 for samples 2 and 
5, respectively, and the result obtained was better than that 
of the other sample combinations, which affected the 
accuracies of the SVM classification. Most of the data 
showed that regardless of the value of C, the overall 
accuracy decreases when Gamma increases to 0.001; the 
effect is a decrease in OA. The ranges of C and Gamma 
factors in all samples indicate that up to 90% accuracy can 
be obtained with a Gamma value of 0.1. 

Moreover, with a small size of the data sample, a 
Gamma parameter of up to 0.0001 may negatively affect 
accuracy, which can only reach up to 50% of OA. On the 
contrary, with a sample size of up to 300, OA may 
consistently be within the minimum of 75% up to 97% 
with increasing sample data. Thus, the effect of tuning 
parameter is caused by OA, given that a small sample size 
(e.g. sample 1 with C and Gamma at 10 and 0.1) results in 
OA of up to 92%. The performance of NB, KNN, RF, DT 
and SVM classifiers with different sample sizes is shown 
in Figure 7 to Figure 8 and Table 6 to Table 11. 

Table 6. Overall accuracy of NB with the increment in sample data 

NB CLASSIFIER OA KC 

SAMPLE 1 81.12 0.760 

SAMPLE 2 90.90 0.887 

SAMPLE 3 91.60 0.896 

SAMPLE 4 92.64 0.909 

SAMPLE 5 93.14 0.915 

Table 7. Variation of parameter K with proportion to the size of sample data 

KNN CLASSIFIER 
K=5 K=10 K=15 K=20 K=25 

OA KC OA KC OA KC OA KC OA KC 

SAMPLE 1 77.62 0.721 69.93 0.623 66.43 0.571 65.03 0.551 61.54 0.506 

SAMPLE 2 73.08 0.661 69.23 0.615 65.73 0.562 64.34 0.542 62.24 0.515 

SAMPLE 3 72.49 0.662 66.90 0.583 66.20 0.573 63.17 0.536 61.07 0.506 

SAMPLE 4 73.38 0.669 68.13 0.596 64.80 0.551 64.27 0.545 62.87 0.524 

SAMPLE 5 71.99 0.653 67.79 0.597 65.69 0.564 64.29 0.548 63.45 0.536 

Table 8. Variation of depth parameter with proportion to the size of sample data 

RF CLASSIFIER 
DEPTH=5 DEPTH=10 DEPTH=15 DEPTH=20 DEPTH=25 

OA KC OA KC OA KC OA KC OA KC 

SAMPLE 1 93.01 0.914 95.10 0.940 95.21 0.942 95.10 0.940 95.10 0.940 

SAMPLE 2 76.84 0.717 93.36 0.918 95.80 0.948 95.45 0.944 93.71 0.923 

SAMPLE 3 76.22 0.711 89.74 0.874 92.07 0.903 91.38 0.894 91.38 0.894 

SAMPLE 4 76.53 0.713 88.79 0.863 92.29 0.906 91.24 0.893 91.24 0.893 

SAMPLE 5 74.79 0.694 87.39 0.846 89.08 0.867 88.80 0.863 89.36 0.870 

Table 9. Variation of parameter depth with proportion to the size of sample data 

DT CLASSIFIER 
DEPTH=5 DEPTH=10 DEPTH=15 DEPTH=20 DEPTH=25 

OA KC OA KC OA KC OA KC OA KC 

SAMPLE 1 81.82 0.776 85.31 0.821 85.31 0.821 86.01 0.830 85.31 0.821 

SAMPLE 2 73.08 0.670 83.92 0.805 83.22 0.796 84.27 0.809 83.22 0.796 

SAMPLE 3 68.53 0.618 75.99 0.711 75.99 0.711 76.13 0.717 75.76 0.709 

SAMPLE 4 70.75 0.644 83.19 0.796 82.66 0.790 82.66 0.790 82.66 0.790 

SAMPLE 5 71.57 0.646 77.87 0.731 79.27 0.746 79.13 0.745 79.31 0.749 
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Table 10. Variation of the combination of parameter C and Gamma with proportion to the size of sample data 

SVM CLASSIFIER SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5 

C GAMMA OA KC OA KC OA KC OA KC OA KC 

10 

1 78.32 0.724 79.02 0.735 78.79 0.731 78.46 0.727 77.17 0.714 

0.1 92.31 0.905 89.51 0.870 87.88 0.850 88.97 0.863 77.17 0.714 

0.01 81.12 0.763 74.83 0.681 75.99 0.698 76.01 0.698 76.19 0.702 

0.001 54.55 0.390 51.75 0.354 55.01 0.403 56.57 0.424 55.18 0.405 

0.0001 27.27 0.002 26.57 0.001 26.81 0.001 32.22 0.077 34.31 0.108 

100 

1 78.32 0.724 79.02 0.735 79.02 0.734 78.46 0.727 78.71 0.730 

0.1 93.71 0.922 92.31 0.905 92.77 0.911 93.17 0.916 93.13 0.916 

0.01 90.91 0.888 89.16 0.866 88.34 0.856 90.89 0.887 92.58 0.908 

0.001 83.22 0.790 75.17 0.686 75.52 0.692 76.88 0.710 77.73 0.722 

0.0001 53.15 0.371 51.75 0.354 55.71 0.413 56.57 0.425 55.00 0.402 

1000 

1 78.32 0.724 79.02 0.735 79.02 0.734 78.46 0.727 78.71 0.730 

0.1 93.71 0.922 92.31 0.905 93.01 0.914 92.99 0.913 93.00 0.914 

0.01 93.01 0.914 95.10 0.940 93.47 0.920 96.15 0.953 95.94 0.950 

0.001 90.91 0.888 89.86 0.875 90.21 0.879 90.01 0.876 90.76 0.886 

0.0001 82.52 0.781 76.57 0.704 77.16 0.714 76.36 0.703 77.17 0.714 

10000 

1 78.32 0.724 79.02 0.735 79.02 0.734 78.46 0.727 78.71 0.730 

0.1 93.82 0.931 92.66 0.910 93.01 0.914 92.99 0.913 93.28 0.917 

0.01 93.01 0.914 94.76 0.935 94.41 0.931 96.82 0.958 96.78 0.960 

0.001 92.31 0.905 95.10 0.940 95.80 0.948 95.80 0.948 96.80 0.961 

0.0001 90.91 0.888 88.11 0.853 88.58 0.859 88.62 0.859 89.64 0.872 

100000 

1 78.32 0.724 79.02 0.735 79.02 0.734 78.46 0.727 78.71 0.730 

0.1 93.71 0.922 92.66 0.910 93.01 0.914 92.99 0.913 93.00 0.914 

0.01 93.01 0.914 95.10 0.940 94.64 0.934 96.15 0.953 96.50 0.957 

0.001 92.31 0.905 96.15 0.953 95.57 0.946 96.15 0.953 97.20 0.966 

0.0001 92.31 0.905 95.45 0.944 95.10 0.940 93.35 0.918 94.82 0.936 

 
3.3.2. Effects of Varying the Number of Selected 

Samples 
The result of the analysis showed that SVM obtained 

the highest accuracy among the five classifiers in terms of 
C and Gamma. The minimum result for the overall 
accuracy and kappa coefficient of SVM for all samples 
was 93.82% and 0.931, respectively, with the total average 
of five samples at 95.96% and 0.951. In addition, the 
overall accuracy of SVM was maintained with an 
accuracy of more than 90% each.  The minimum accuracy 
of the SVM classifier was better than the highest overall 
accuracy and kappa coefficient for NB (93.14% and 
0.915), DT (86.01% and 0.830) and KNN (77.62% and 
0.721). Sample 2 of RF showed the highest overall 
accuracy and kappa coefficient of 95.80% and 0.948, 
respectively. Sample 5 of SVM obtained the highest result. 
The result is contrary to that of Sample 5 of RF, which 
obtained the lowest overall accuracy and kappa coefficient 
with the maximum size of sample data. The overall 
accuracy for NB was consistent in Samples 2 to 5, with an 
accuracy of more than 90% each. However, with a small 
number of training and testing data samples, the accuracy 
decreased to 81.12%. The average accuracy and kappa 
coefficient of the DT classifier were 81.77% and 0.780, 
respectively, and Sample 1 obtained the best result. 
Graphs in Figure 7 and Figure 8 show that KNN obtained 
the lowest accuracy and kappa values for all data sample 
sizes compared with the other classifiers. 

The size of training and testing data affected the 
classification accuracy of certain classifiers, such as NB 
and DT, compared with RF and KNN, which are less sensitive 
to the increase in sample data. SVM and RF obtained a 
consistent overall accuracy with the most outstanding 
result (more than 90%) compared with the other classifiers. 
The KNN classifier obtained the highest score of 77.62% 
and 0.721 for accuracy and kappa values, respectively. 
Hence, increasing the number of data samples did not 
affect the increase in the overall accuracy of classification. 

The result shows that the variation of the size of 
training samples from 100 to 500 (sample 1 to 5) 
increased the accuracy of NB and SVM by 12.02% and 
3.38%, respectively. On the contrary, the accuracy of DT, 
RF and KNN decreased to 6.74%, 5.85% and 5.63%, 
respectively. The NB classifier was the most sensitive to 
the variation of sample size because the parametric 
classifier consumes the training samples to estimate the 
parameter value for data allocation. Hence, with the 
increasing number of training samples, a highly accurate 
parameter estimation can be achieved. SVM is the least 
sensitive to sample sizes because it requires support 
vectors rather than using all training samples to create  
a separating hyperplane. Table 11 shows that the 
classification accuracy of the three classifiers shifted and 
became inconsistent when Sample 3 with more than 300 
samples was selected with a variation of DT (-8.74%), RF 
(-3.73%) and KNN (-0.59%). This result revealed that 
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Sample 3 is the turning point among these classifiers. The additional sample size disrupted the accuracy. 

Table 11. The best accuracy for each classifier with the variation of the size of sample data 

CLASSIFIER / SAMPLE 
NB KNN RF DT SVM 

OA KC OA KC OA KC OA KC OA KC 

SAMPLE 1 81.12 0.760 77.62 0.721 95.21 0.942 86.01 0.830 93.82 0.931 

SAMPLE 2 90.90 0.887 73.08 0.661 95.80 0.948 84.27 0.809 96.15 0.953 

SAMPLE 3 91.60 0.896 72.49 0.662 92.07 0.903 76.13 0.717 95.80 0.948 

SAMPLE 4 92.64 0.909 73.38 0.669 92.29 0.906 83.19 0.796 96.82 0.958 

SAMPLE 5 93.14 0.915 71.99 0.653 89.36 0.870 79.27 0.746 97.20 0.966 

AVERAGE 89.88 0.873 73.71 0.673 92.95 0.914 81.77 0.780 95.96 0.951 

 
Figure 7. Result of overall accuracies for the best of the five classifiers with increasing sample size 

 
Figure 8. Kappa coefficient (KIA) of the five classifiers with increasing sample size 
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Figure 9a. Orthomosaic 

 
Figure 9b. SVM classification 

 
Figure 9c. RF classification 

 
Figure 9d. NB classification 
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Figure 9e. DT classification 

 
Figure 9f. KNN classification 

Table 12. The best classification accuracy for each classifier 

CLASSIFIER SAMPLE DATA PARAMETER VALUE OVERALL ACCURACY KIA 

NB 5 N/A N/A 93.14 0.915 

KNN 1 K NEIGHBORS K=5 77.62 0.721 

RF 2 MAXIMUM DEPTH D=15 95.80 0.948 

DT 1 MAXIMUM DEPTH D=20 86.01 0.830 

SVM 5 GAMMA, C GAMMA = 0.001, C=100000 97.20 0.966 

Table 13. Results of the McNemar test for each classifier 

CLASSIFIER 1 CLASSIFIER 2 X2  P value SIGNIFICANT 
SVM RF 13.39535  0.0025 SIGNIFICANT 
SVM NB 9.63333  0.00191 SIGNIFICANT 
SVM DT 62.02532  0 SIGNIFICANT 
SVM KNN 51.8481  0 SIGNIFICANT 
RF NB 0.70588  0.4081 NOT SIGNIFICANT 
RF DT 31.64063  0 SIGNIFICANT 
RF KNN 27.16071  0 SIGNIFICANT 
NB DT 29.71429  0 SIGNIFICANT 
NB KNN 31.58209  0 SIGNIFICANT 
DT KNN 0.28409  0.59403 NOT SIGNIFICANT 

 
Figures 9(a) to 9(f) present an orthomosaic of the study 

area and the result of the best classification for each 
classifier with the parameter indicated in Table 12. These 
findings present an important implication in the selection 
of appropriate classifiers. SVM outperformed the other 
classifiers and was the best classifier for land cover 
classification. The SVM classifier provided good overall 
classification for all sample data. NB can be an alternative  
 

classifier when the training samples are sufficiently large. 
RF also shows the potential to obtain high accuracies as 
those of SVM with sufficient parameter setting. 

The McNemar test indicated that the SVM classifier 
was highly significant compared with the other classifiers. 
Hence, SVM outperformed the other classifiers. The 
significant results of the McNemar test are presented in 
Table 13. 
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3.4. Error Assessment of Geometrical 
Information 

In conjunction with best classification result of the 
SVM classifier, the image underwent geometrical assessment 
with the dimensional features evaluated. The three types 
of civil infrastructures selected for the geometrical 

assessment were building, road and drainage.  
The results show that the difference of the ground truth 

data with the image classification was less than 1 metre. 
The geometry of the as-built feature is acceptable because 
the error is less than 1 m and is justified for mapping 
purposes as Table 14. The final topographic map is shown 
in Figure 10.  

Table 14. Geometrical assessment of as-built features 

CLASSES GROUND TRUTH (Acquired from Ground Truth Survey)  
& OBIA (Extraction from UAV data) 

ERROR ASSESSMENT 
= Ground Truth (GT) - OBIA 

 

Building 1 

CT 

 

 
OBIA 

 

 
 

 

 

Building 2 

 

GT 

 

 
OBIA 

 

 

GT (m) OBIA (m) ERROR +/-
B1 (a) 10.809 10.94 -0.131
B1 (b) 5.513 5.613 -0.100
B1 (c) 8.982 8.875 0.107
B1 (d) 9.989 9.915 0.074

CLASSES

BUILDING, 
B1

GT (m) OBIA (m) ERROR +/-
B2 (a) 8.483 8.397 0.086
B2 (b) 13.822 13.939 -0.117
B2 (c) 14.417 14.311 0.106
B2 (d) 5.593 5.744 -0.151

CLASSES

BUILDING, 
B2
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CLASSES GROUND TRUTH (Acquired from Ground Truth Survey)  
& OBIA (Extraction from UAV data) 

ERROR ASSESSMENT 
= Ground Truth (GT) - OBIA 

Drainage 1 

CT 

 
OBIA 

 

 

Drainage 2 

GT 

 

 
OBIA 

 

 

Road 1 

GT 

 

 
OBIA 

 

 

GT (m) OBIA (m) ERROR +/-
D1 (a) 1.398 1.526 -0.128
D1 (b) 1.599 1.507 0.092
D1 (c) 10.462 10.606 -0.144

CLASSES

DRAINAGE, 
D1

GT (m) OBIA (m) ERROR +/-
D2 (a) 12.865 12.756 0.109
D2 (b) 1.313 1.517 -0.204
D2 (c) 1.338 1.255 0.083
D2 (d) 3.308 3.511 -0.203

CLASSES

DRAINAGE, 
D2

GT (m) OBIA (m) ERROR +/-
R1 (a) 14.993 14.880 0.113
R1 (b) 12.425 12.307 0.118
R1 (c) 11.238 11.114 0.124
R1 (d) 5.533 5.638 -0.105

CLASSES

ROAD,      
R1
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CLASSES GROUND TRUTH (Acquired from Ground Truth Survey)  
& OBIA (Extraction from UAV data) 

ERROR ASSESSMENT 
= Ground Truth (GT) - OBIA 

CLASSES 
GROUND TRUTH 

(Acquired from Ground Truth Survey) & OBIA 
(Extraction from UAV data) 

ERROR ASSESSMENT 
= Ground Truth (GT) - OBIA 

Road 2 

GT 

 

 
OBIA 

 

 

 

 
Figure 10. Final topographic map based on the best accuracy of the 
SVM classifier 

4. Conclusion 

We have evaluated and compared the performance of 
five machine learning classifiers in classifying high-
resolution images by implementing an OBIA procedure. 
The SVM classifier obtained the highest results among all 
classifiers. The classification was affected by the accuracy 
of the tuning parameters for each classifier when different 
sizes of training and testing samples were used.  

The extraction of as-built information was examined 
through a geometrical assessment with the output of the 
data extraction. The tolerance of as-built information 
(building, drainage and road) through the ground truth 
data using survey equipment (total station) with UAV 
OBIA data obtained an error of less than 1 metre. The 
combination of UAV and OBIA can provide a rapid and 
efficient approach for map updating, especially in rapidly 
changing urban areas. This technique can potentially 
replace current procedures that utilise piloted aircraft and 
high-resolution satellite data (more expensive and time 
consuming). Hence, the results of this study provide an 
additional insight into the use of OBIA for UAV optical 
imagery information extraction. 
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