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1. Introduction 

Small ground deformations have been observed in 
seismically active regions during the aseismic period in 
between two major seismic events. A long, vertical, 
surface breaking, strike-slip fault is taken to be situated in 
a viscoelastic half space of Maxwell type material. Mantle 
convection and other related phenomena, result in tectonic 
forces, which act on the system producing a sudden 
movement across the fault leading to an earthquake. Such 
types of models were considered in the article [1,2,3]. They 
have obtained analytical solutions of displacement, stress 
and strain in the medium using integral transform and Green's 
functions techniques. In the present paper a numerical 
technique has been developed to study the nature of 
displacements, stresses and strains in the system near the 
fault after fault movement. The numerical technique is 
basically a two dimensional finite difference scheme with 
discontinuity along the fault plane. The advantages of 
numerical techniques lie in the fact that the movement 
across the fault as well as the nature of tectonic forces due 
to mantle convection can be represented more realistically 
following the actual observations on ground deformations. 

2. Formulation 

We consider a theoretical model of the lithosphere 
asthenosphere system with long, vertical, surface breaking 
strike slip fault F of finite depth D lies in a linearly 

viscoelastic medium with its material of the Maxwell  
type. 

We introduce a rectangular Cartesian coordinate system 
( 𝑦1,𝑦2,𝑦3 ) with the free surface of the viscoelastic half 
space given by 𝑦3 = 0 and 𝑦3 axis is pointing vertically 
downward into the half space. 𝑦1  axis lies on the free 
surface of the viscoelastic half space and extended along 
the upper edge (strike) of the fault F. With this choice of 
axes the half space is given by 𝑦3 ≥ 0  and the fault F 
by 𝑦2 = 0, 0 ≤ 𝑦3 ≤ 𝐷, where D be the vertical depth of 
the fault from free surface. A simple diagram of our model 
with respect to the Cartesian coordinate system is shown 
in the following Figure 1.  

 

Figure 1. A simple diagram of our model 

Let  (𝑢1,𝑢2, 𝑢3) be the components of the displacement 
vector along the coordinate axes  (𝑦1,𝑦2,𝑦3)  respectively 
and 𝜏11, 𝜏12, 𝜏13, 𝜏22, 𝜏23,  𝜏33 be the components of stress 
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while 𝑒11 , 𝑒12 , 𝑒13 , 𝑒22 , 𝑒23 ,  𝑒33  are the components of 
strain. Due to long fault along 𝑦1 axis all the stress, strain 
and displacement components are taken to be independent 
of 𝑦1  and therefore they are functions of 𝑦2,  𝑦3  and t only. 
Under this assumption all stress, strain and displacement 
components separate out into two independent groups-one 
group consisting of 𝑢1; 𝜏12, 𝜏13; 𝑒12, 𝑒13 is associated with 
possible strike slip movement while the other group 
consisting of 𝑢2,𝑢3 ; 𝜏22 ,  𝜏23 ,  𝜏33 ; 𝑒22 ,  𝑒23 ,  𝑒33  is 
associated with possible dip slip movement of the fault  as 
explained in [4] and [5]. Here we consider only the first 
group for studying possible strike slip movement in the 
medium. 

We set our initial time t=0 when the entire medium is in 
a quasi static, aseismic state but a slow aseismic 
deformation continuously going on within it. We assume 
that two equal and opposite constant shear stresses 𝜏∞ , 
−𝜏∞  are acting in the medium far away from the fault 
plane and parallel to fault plane. These are maintained  
by some tectonic forces arising mainly due to mantle 
convection and/or other geological changes. Therefore for 
t  ≥  0 the displacement, stress and strain components 
satisfy the following relations and boundary conditions.  

2.1. Stress-Strain Relations (Constitutive 
Equations) 

For the viscoelastic medium of Maxwell type the 
relation of stress and strain components associated only 
with strike -slip movement are obtained by the following 
relations:  
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(−∞ < 𝑦2  <  ∞, 𝑦3 ≥ 0, 𝑡 ≥ 0). 
Where 𝜇  is the effective rigidity and ɳ is the effective 
viscosity of the viscoelastic medium and supposed to be 
constant throughout the medium. 

2.2. Stress Equation of Motion 
As per our consideration the entire medium is in a quasi 

static, aseismic state but a slow, aseismic deformation 
continuously going on within it. Due to this slow  
aseismic quasi static deformation, order of magnitude of 
variation of inertial forces are very small and can be 
neglected. 

Therefore, the relevant stress equation of motion will be 
of the form: 
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(−∞ < 𝑦2  <  ∞,  𝑦3 ≥ 0, 𝑡 ≥ 0). 
From equations (1) and (2) we get, 
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This is satisfied if 
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(−∞ < 𝑦2  <  ∞,  𝑦3 ≥ 0, 𝑡 ≥ 0). 

2.3. Boundary Conditions 
On the free surface 𝑦3 = 0 the shear stress component 

𝜏13 must vanish and we have  

 13 30 0on yτ = =  (4) 

(−∞ <  𝑦2 <  ∞, 𝑡 ≥ 0). 
At a large vertical depth from free surface stress 

component 𝜏13 remains unaltered with respect to the stress 
level in the medium at t=0. Therefore, 

 𝜏13 → 0 as 𝑦3 → +∞  (5) 
(−∞ < 𝑦2 < ∞, 𝑡 ≥ 0). 

As our earlier consideration two equal and opposite 
constant shear stresses 𝜏∞ , −𝜏∞ are acting in the medium 
far away from the fault plane and parallel to the fault 
plane. So we get 

 12 2

12 2

   τ    as
τ  as

y
y

∞

∞

τ
τ

→ →∞
→ − → −∞

 (6) 

( 𝑦3 ≥ 0, 𝑡 ≥ 0). 
Where, 𝜏∞  is the constant shear stress maintained by 
mantle convection and some other related tectonic phenomena. 

2.4. Initial Conditions 
Let (𝑢1)0 ,  (𝜏12)0 ,  (𝜏13)0,  (𝑒12)0,  (𝑒13)0 are the initial 

values (i.e. at t=0) of 𝑢1,  𝜏12,  𝜏13,  𝑒12, 𝑒13  respectively. 
They are functions of 𝑦2,𝑦3  and satisfy all the relations 
from (1) to (6) where initial time t= 0 is measured from a 
suitable instant when there is no seismic activity in the 
medium. 

3. Solution before the Fault Movement 

When there is no seismic events in the medium the 
displacement, stress and strain components associate with 
the strike slip movement are obtained by applying  
Laplace transform with respect to t  of the constitutive 
equation (1), reduced equation (3), boundary conditions 
from (4) to (6) and finally using inverse Laplace transform 
as follows: [2] 
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At left hand side region of the fault plane displacement, 
stress and strain components are given by the above 
relation (7a) replacing 𝜏∞ by −𝜏∞ and  𝑦2 by −𝑦2.  
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From the above result it is clear that the stress 
component 𝜏12  is a increasing function (on the left hand 
side it is increasing negatively) of t. From the initial value 
 (𝜏12)0  it will ultimately reach to 𝜏∞  or −𝜏∞  as t → ∞. 
From the rheological behavior of the viscoelastic material 
near the fault F we may assume that it is capable to bear 
only some threshold amount of stress (say,  𝜏𝑐 ) called the 
critical value of stress, with |𝜏𝑐 |< |𝜏∞|. Therefore after a 
certain time, say T, the accumulated stress in the medium 
near the fault F exceeds the critical level of stress and a 
fault movement will take place across the fault plane. In 
this model we consider a sudden movement along the fault 
plane due to overstep of the accumulate stress near the 
fault plane after the critical time T. 

4. Solution after Dislocation: Formation 
of Finite Difference Scheme with 
Discontinuity 

From the previous section we have seen that after a 
certain time T, the stress component  𝜏12 , which is the 
main driving force in our model generated mainly due to 
mantle convection and some other tectonic phenomena 
such as gravity, internal pressure, resisting forces along 
the plate boundaries etc, oversteps the critical value of the 
stress  𝜏𝑐  and a dislocation (assumed to be a sudden 
movement) occurs in the medium across the fault F. 

Therefore, all the relations from (1) to (6) are also 
satisfied in this case with an extra condition due to 
dislocation along F as follows: 

 1 3[ ] ( ) ( )u U f y H t T= × × −  (8) 

where [ 𝑢1 ] is the discontinuity in displacement 𝑢1  
across the fault F, defined by [𝑢1 ] =   lim𝑦2→0+(𝑢1) -
 lim𝑦2→0−(𝑢1) (0 ≤  𝑦3  ≤ 𝐷). 
Where U  is the amount of dislocation on the free surface, 
H(𝑡 − 𝑇) is the Heaviside step function and  𝑓(𝑦3) is the 
depth dependence dislocation function, which should 
follows the following conditions for finite values of 
displacements, stresses and strains at any point (𝑦2,𝑦3, 𝑡)  
in the medium including the point on lower edge of the 
fault. [2] 

(i) 𝑓(𝑦3)  and 𝑓′(𝑦3) are continuous functions of 𝑦3 for 
0 ≤  𝑦3  ≤ 𝐷. 

(ii) 𝑓(𝐷) = 0 = 𝑓′(𝐷)  and 𝑓′(0) = 0. 
(iii) Either 𝑓′′(𝑦3) is continuous in 0 ≤  𝑦3  ≤ 𝐷 except 

for a finite number of points of finite discontinuity in 
0 ≤  𝑦3  ≤ 𝐷  or, 𝑓′′(𝑦3)  is continuous in 0 <  𝑦3  < 𝐷 
and there exist real constants m, n < 1 such that 
(𝑦3)𝑚 𝑓′′(𝑦3)  → 0  or to a finite limit as 𝑦3 → 0+  and 
(𝐷 − 𝑦3)𝑛 𝑓′′(𝑦3) → 0 or to a finite limit as 𝑦3 → 0−. 

Here we consider depth dependence dislocation 
function which satisfies all the above sufficient conditions 
as: 
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After the critical time T the medium passes through a 
seismic state for a small time period, say 𝑡∈  which is  
very small, usually of the order of a few seconds.The 
seismic disturbances gradually die out and aseismic  
state reestablished. We study our model at the time  
 𝑇∈  (= T + 𝑡∈ ) immediately after restoration of new 
aseismic state in the medium. 

The relevant boundary value problem after the fault 
movement can be described as follows: 

The result of seismic tomography, numerical simulation 
of mantle convection and examination of Earth's 
gravitational fields suggest that horizontal movement of 
plates in two opposite directions can be occurred along the 
plate boundary due to mantle convection. On the basis of 
this observation, we consider two equal and opposite 
constant forces  𝜏12  =constant =  𝜏∞  acting along 
+𝑦1 direction as 𝑦2 → ∞  and  − 𝜏12  =constant =  −𝜏∞ 
acting along −𝑦1 direction as 𝑦2 → −∞   and remain 
unchanged after dislocation. 

We are introducing finite difference method to find the 
displacements, stresses and strains over the region. 
Because of long fault along 𝑦1 axis all the components are 
independent of 𝑦1 and therefore we consider a rectangular 
region R (−𝑎  ≤  𝑦2  ≤ 𝑎  , 0 ≤  𝑦3  ≤ 𝑏) perpendicular to 
the 𝑦1 axis through origin, where 𝑎 and b are chosen as 
per our requirement. The surface breaking, long, vertical 
strike slip fault lies at 𝑦2 = 0 and its dislocation extended 
through  𝑦3 axis upto depth D from free surface. 

In order to find the numerical solution of (3) with 
appropriate boundary conditions, we superimpose on R a 
rectangular network with equal step length h in 𝑦2 and 𝑦3 
directions (i.e. square network). The nodal points are 
given by 
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Denote the numerical value of  𝑢1 and  𝜏12  at the nodal 
point (𝑥𝑖, 𝑥′𝑗) by and 𝑢𝑖,𝑗 and  𝜏𝑖,𝑗 respectively. 

For applying finite difference scheme we write equation 
(1) and (3) in discrete form taking equal step length  
h for 𝑦2 and 𝑦3  directions (i.e. square network), step 
length 𝑡𝑠  for time variable t and obtain the following 
expressions: 

For equation (3) at time t,  

 1, 1, , 1 , 1 ,   4 0.i j i j i j i j i ju u u u u− + − ++ + − =+  (10) 

For first relation of equation (1), 

  (11) 

where (𝜏𝑖,𝑗 )𝑡  and  (𝑢𝑖,𝑗 )𝑡  denote value of 𝜏𝑖,𝑗 and  𝑢𝑖,𝑗  
respectively at the time t. 
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But, following our consideration far away from the 
fault (i.e. as | 𝑦2| → ∞ ) stress remains constant and 
therefore at the boundary regions ( 𝑦2 = ±𝑎,  𝑦3 ≥ 0 ) we 
must have (𝜏𝑖,𝑗 )𝑡 = (𝜏𝑖,𝑗 )𝑡−𝑡𝑠. By this condition the above 
expression (11) becomes 

  (12) 

For equation (5) as  𝑦3 → ∞ (i.e. at a large depth from 
free surface) at any time t,   

 𝑢𝑖,𝑗+1 =  𝑢𝑖,𝑗   (13) 

The horizontal displacement  𝑢1𝑑(𝑦2,𝑦3, 𝑡) on the free 
surface (−𝑎 ≤  𝑦2  ≤ 𝑎,  𝑦3 = 0  ) at time t = 𝑇∈ only due 
to dislocation along the fault F is given by the following 
expression. [6] (by using correspondence principle)  
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[𝑤ℎ𝑒𝑟𝑒, 𝑦2 ≠ 0]. 

4.1 Application of Finite Difference Method 
with Dislocation 

Thus, we obtain a rectangular region R(−𝑎 ≤  𝑦2  ≤ 𝑎, 
0 ≤  𝑦3  ≤ 𝑏) having a discontinuity in 𝑢1 along the fault 
plane and satisfies the equation of motion (3) over the 
whole region with following conditions.  

The surface breaking , vertical, long, strike slip fault F 
lies at the middle of the region R (i.e.  𝑦2 = 0, 0 ≤ 𝑦3 ≤ 𝑏) 
and two equal opposite forces  𝜏∞  and -  𝜏∞  are acting 
parallel to  𝑦1 axis at the two opposite sides  𝑦2 → 𝑎 and 
𝑦2 → −𝑎 respectively of the fault. Therefore, we consider 
an equal and opposite (i.e. anti- symmetrical) distribution 
of dislocation on the two sides of the fault F.  

Due to anti-symmetrical force system in the region R, 
we should have an anti-symmetrical distribution of 
dislocation on the free surface. Dislocation just at the 

positive side of the fault is 
2
U

+  and just at the negative 

side 
2
U

−  and which is consistent with formula (14). Because, 

from (14) as 𝑦2 → 0+,  1 2 3( , ,
2

)0d Uu y y T∈= → +  and 

 𝑦2 → 0−,  𝑢1𝑑(𝑦2,𝑦3 = 0,𝑇∈) → −  𝑈
2
.  

On the free surface total horizontal displacement is given 
by adding the normal displacement 𝑢1 ((𝑦2,𝑦3 = 0, 𝑇)  
due to effect of |𝜏∞ | obtained by (7a) or (7b) with the 
displacement 𝑢1𝑑(𝑦2,𝑦3 = 0,𝑇∈ )  due to dislocation along 
the fault F after critical time T by (14). At the right hand 
side of R (i.e. 𝑦2= 𝑎) stress component  𝜏12 =constant =  
𝜏∞ ; at the left hand side of R  (i.e.  𝑦2 = −𝑎 ) stress 
component −𝜏12  =constant = −𝜏∞ ; at the vertically 
downward side of R (i.e. 𝑦3= b)  𝜏13 = 0. [Figure 2] 

 

Figure 2. The region R under square network and associated boundary conditions (Note: AB and CD are vertical lines of the network just to left and to 
the right to the fault F) 
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Applying the difference scheme (10) at all the internal 
grid points (except at the grid points along AB and CD 
denoted by darken triangle in Figure 2), where AB and 
CD are the vertical lines of the network R just to the left 
and to the right of the fault F respectively, and with the 
help of appropriate boundary conditions stated above and 
using relations (12), (13) at the corresponding boundary 
we obtain a system of linear algebraic equations. 

But there is some discontinuity of  𝑢1, given by relation 
(8), due to dislocation along the fault F. Due to presence 
of this discontinuity along F we can't apply the difference 
scheme (10) at the grid points on AB and CD. We set 
some other linear algebraic equation at that points using 
depth dependence dislocation function (9) as follows: 

As two equal and opposite forces are acting parallel to 
𝑦1  axis far away from the fault at two opposite sides 
( 𝑦2 = ±𝑎 ) of the fault F which lies at the middle position 
(i.e.  𝑦2 = 0, 0 ≤  𝑦3  ≤ 𝑏) of the region R (−𝑎 ≤  𝑦2  ≤ 𝑎, 
 0 ≤ 𝑦3 ≤ 𝑏). Thus we obtain an anti-symmetrical force 
system with respect to the fault plane over the region R. 
Therefore we assume an anti-symmetrical distribution of 
dislocation at the grid points on AB and CD. We first 
calculate total dislocation along the fault F using relations 
(8) and (9), and divide this dislocation into two equal half 
but in opposite directions and set a new linear algebraic 
equation at that grid points. 

Along AB: 
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Similarly, along CD: 
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Where (0,  𝑦2,  𝑦3)  is the Cartesian coordinate of the  
(i, j) th grid point in the region R. 

By this we get a system of linear algebraic equations 
with the same number of equations as the number of 
unknowns. This system of algebraic equations can be 
expressed as 

 1 .PU Q=  (15) 

5. Convergence and Stability Analysis 

For the linear partial differential equation 𝐴 𝑢𝑥𝑥 + 
𝐵 𝑢𝑦𝑦+𝐶 𝑢𝑥+𝐸 𝑢𝑦+ 𝐹𝑢 = 𝐺 in a regain ℜ the difference 
scheme will be of the form 
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where A,B, ... , G are continuous functions of x and y and 
following [7] we get coefficient values as: 
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By applying the difference scheme (16) at all the nodal 
points in the region ℜ, we get a system of algebraic 
equations with the number of equations equals to the 
number of unknowns and this system of equations can be 
written as  

 MX N.=  (17) 
Under the following condition   
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We have, 

 0 0 1 2 3 4and0α α α α α α+< > + +   (19) 

i.e. off-diagonal elements of M are positive, diagonal 
elements are negative and M has diagonally dominance. 
Thus the matrix M is irreducible and by these properties 
we assure the convergence of system of equations (17). 

In our problem the linear partial differential equation  
is 𝑢1𝑦2𝑦2 + 𝑢1𝑦3𝑦3 = 0 (Laplace Equation) i.e. A = B = 1,  
C = E = F = G = 0 and for square network h = k. So, the 
condition (18) is satisfied obviously by our partial 
differential equation and the coefficient matrix P in 
equation (15) is irreducible [14] which assures the 
convergence of the solution of the system of equations 
(15). 

It is important to note for the elliptic equation method 
of support operators (which we use for the finite 
difference scheme) that they automatically give us a stable 
finite-difference scheme. [9] 

6. Numerical Computation 

For finding results using numerical computation we 
consider different values for our model parameters as 
follows: 

Following the paper [2] and from the recent studies on 
Lithosphere-asthenosphere system we consider the rigidity 
(μ) and viscosity (ɳ) as   

 μ=3.5 x 1011 dyne/𝑐𝑚2 
 ɳ=5 x 1020 poise 
U = Dislocation across the fault on free surface = 80 cm. 

For most of the major faults, faults width are found to 
lie in between 10 to 15 km and therefore we take  

 D= Width of the fault =10 km  
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 (𝜏12)0= initial value of 𝜏12 = 50 bar 

 𝜏∞= 250 bar 

 𝜏𝑐= critical level of stress =200 bar  

Under this critical stress value it is found that 
𝜏12  oversteps the critical value of stress after a time of 
62.8 years approximately and we take T = Critical time 
level =62.8 years.  

 𝑡𝑠= step length for time variable t =1 year. 
 h= length of square mesh =1 km. 

From equation (14) we have seen that at a horizontal 
distance of 150 km from the fault, in both sides of F, free 
surface displacement due to dislocation in 𝑢1  becomes 
very small and therefore we take, 

 2a= horizontal length of R =301 km 

 b= vertical depth of R =90 km. 

7. Results and Discussion 

Applying finite difference scheme at each nodal point 
over R with previously stated modification for dislocation 
near the fault F, we obtain a system of linear algebraic 
equations   𝑃𝑈1 = 𝑄 . Using MATLAB (2012) we first 
solve this system of equations and obtain displacement at 
each nodal point. With the help of these displacement 
values we further evaluate stress at each nodal point and 
obtain the displacement, stress immediately after the 
dislocation across the fault, at a time when the aseismic 
state re-established in the medium. To find out the effect 
of dislocation on displacement and stress components we 
subtract displacement and stress values before dislocation 
(i.e. at time T) from the final results. 

 

Figure 3. Displacement (u1) along horizontal lines due to dislocation 

7.1. Displacement along Horizontal Lines 
The Figure 3 shows variation of displacement component 

𝑢1  due to dislocation across the fault along different 
horizontal lines at different depth over the rectangular 
region R. In each cases figure is anti-symmetrical in 

nature with respect to dislocation line as expected. In both 
sides of the fault absolute value of displacement 
component is found to decrease as we move away from 
the fault and tends to zero as  |𝑦2| > 150  km. The rate of 
change of displacement component 𝑢1 with 𝑦2 reduces in 
the lower region from free surface. However, near the 
lower edge of the fault 𝑦3  ≥  9km the displacement 
initially increases in magnitude and thereafter tends to 
zero as |𝑦2|  > 150 km. At a depth of about 20 km, 
magnitude of the displacement component due to 
dislocation is found to be very small.  

7.2. Displacement along Vertical Lines 
In Figure 4 we show displacement component 𝑢1 along 

different vertical lines parallel to the fault. In right hand 
side region 𝑦2 > 0 displacement gradually decreases in 
magnitude along 𝑦3 direction and ultimately tends to zero 
at a large depth from free surface. It is also found that the 
rate at which the displacement is decreasing depends upon 
the distance from the fault plane being highest near the 
fault plane. Curve corresponding to a large distance from 
the fault plane passes very close to 𝑦3 axis and remains 
almost constant throughout the depth which signifies that 
far away from the fault there is a negligible effect of 
dislocation on displacement component 𝑢1   and which 
gives a satisfactory support with similar geophysical 
models. Here we have plotted curves only at right hand 
side region 𝑦2> 0 but we will obtain an anti-symmetrical 
picture over whole region R.  

 

Figure 4. Displacement (u1) along verical lines due to dislocation 

7.3. Stress along Horizontal Lines 
In the Figure 5 we have shown variation of stress 

component 𝜏12  due to dislocation along different 
horizontal lines at different depth over the region R and 
the figure is anti-symmetric as expected. In right hand side 
(𝑦2> 0) at the upper portion of the fault, the magnitude of 
stress is found to be decreasing as we move away from the 
fault plane and from a negative value it will ultimately 
tends to zero as 𝑦2 ≥  100 km. Thus we get a stress 
reduction zone at the upper portion of the fault and this 
reduction amount decreases as we move away from the 
fault plane. 
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At the lower edge of the fault we get slightly different 
nature in stress. Near to the fault, stress is positive and 
decreases to some small negative value, and it ultimately 
converges to zero as we move away from the fault. Thus 
we obtain a stress accumulation zone near the lower end 
of fault. At a large depth from the free surface variation of 
stress due to dislocation remains unaltered as we move 
away from the fault. 

For left hand side of the fault stress pattern can be 
explained in same way. But one important declaration 
should be noted here that in positive side of F, +ve stress 
means stress accumulation and -ve stress means stress 
reduction whereas in negative side, +ve stress means 
stress reduction and -ve stress means stress accumulation.  

 

Figure 5. Stress (τ12) along horizontal lines due to dislocation 

7.4. Contour Map under Stress Distribution 
In the Figure 6 we have shown overall variation of 

stress 𝜏12  due to dislocation over the region R. Where 
positive value means stress accumulation and negative 
value means stress reduction over the whole region R. 

 

Figure 6. Contour map for stress (τ12) distribution due to dislocation  
[in bar] 

7.5. Stress Reduction and Accumulation 
Regions 

In the Figure 7 we have distinguished the whole rectangular 
region into two different parts; one part marked by “A” 
means stress accumulation region and the other part 
marked by “R" means stress reduction region due to 
dislocation along the fault plane. Therefore, for any other 
fault in the stress reduction region its chance of further 
movement reduces whereas for any other fault in stress 
accumulation region its chance of further movement 
enhances due to this dislocation across the fault F. 

 

Figure 7. Stress Reduction and Accumulation regions due to dislocation 

8. Conclusions 

The objective of the present paper was to show that proper 
numerical technique can be developed for solving boundary 
value problem of complex nature having discontinuities in 
the variables. 

The results obtained here were found to be in conformity 
with the similar results obtained by analytical methods. 

The problems of discontinuities had been taken care of 
by suitable adjustment of finite difference schemes. 

It is expected that such numerical methods can also be 
applied to more complicated types of problems related to 
aseismic ground deformation. 

Appropriate modifications can also be incorporated in our 
model in case when the tectonic forces are not anti-symmetric 
in nature. 
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