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Abstract  Maize lethal necrosis (MLN) is a disease that attacks maize crops with significant impacts on both food 
security and nutrition security on smallholder farmers in Kenya. The study used spatial regression analysis to model 
MLN severity on sampled farm fields in Bomet County, Kenya. The modelling analysis integrated spatial 
information based on derived crop mask, on-site derived MLN disease severity index at an optimal maize growing 
season and phenological stage. Relevant ecological variables derived spatially including temperature, rainfall, soil 
moisture and slope were identified and fed into a spatial regression model. Significant ecological variables were 
weighted and used as basis for generating spatially explicit MLN severity index map. MLN affected farms have 
spatial dependence with MLN severity becoming less correlated the further away from each MLN affected farm 
field. The ecological variables have negative influence on MLN severity except for temperature. Soil moisture, 
rainfall and slope are the most significant determinants of MLN severity index in Bomet (all <p 0.05), with high 
MLN severity areas identified in Chebunyo, Sigor and Kipreres. This study would help in MLN epidemiological 
surveillance and in developing site-specific control measures and interventions. The spatial model used in this study 
could be replicated and up-scaled to other MLN prone areas in Kenya and in Africa coupled with other statistically 
significant spatiotemporal ecological variables to fully understand and ascertain MLN disease outbreak. 

Keywords: maize lethal necrosis, disease severity index, spatial regression 

Cite This Article: Michael Osunga, Felix Mutua, and Robinson Mugo, “Spatial Modelling of Maize Lethal 
Necrosis Disease in Bomet County, Kenya.” Journal of Geosciences and Geomatics, vol. 5, no. 5 (2017): 251-258. 
doi: 10.12691/jgg-5-5-4. 

1. Introduction 

Maize lethal necrosis (MLN) is a disease that attacks 
maize crops. MLN disease was first reported in Kansas in 
the year 1976 [1,2]. It then spread to Hawaii where it was 
reported in the year 1990 in the town of Kauai [3]. In 
Africa, it was first reported in the year 2011, the month of 
September in Bomet County where it spread into 
Chepalungu, Narok and Naivasha districts [4]. The disease 
was reported in all the provinces in Kenya with the 

exception of North eastern province [4]. It has been 
reported in Rwanda [5], Tanzania [6], Uganda [7], 
Democratic Republic of Congo [8], Ethiopia [9], Burundi 
[10] and South Sudan [9]. Maize crops are susceptible to 
MLN at all phenological stages [6]. The rate of MLN 
infection and damage is high, affecting yields and causing 
loss of crops [11] therefore having significant impacts on 
both food security and nutrition security of farming 
families in Kenya. MLN disease tetrahedron in East 
Africa lies within the interaction amongst pathogens, 
disease hosts and vectors with the environment [12], as 
illustrated in Figure 1. 

 

Figure 1. MLN disease tetrahedron in East Africa 
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Ecological variables have direct and indirect effects on 
MLN as they tend to influence pathogen infection, affect 
the development of MLN insect vectors; contribute  
to more conducive environment for insect vectors’ 
breeding and development. Pathogens include maize 
chlorotic mottle virus (MCMV) and sugarcane mosaic 
virus (SCMV) that contribute to MLN [13,14,15,16]. The 
disease host includes the maize crop itself [14] and 
alternative hosts like sorghum, finger millet, sugarcane, 
Napier grass, kikuyu grass and wild grass [15]. MLN is 
transmitted mechanically and spread by several insect 
vectors such as aphids, leafhoppers [4,16,17], thrips,  
[3,18] and beetle species of the family chrysomelidae [17] 
namely; corn flea beetle, cereal flea beetle, flea beetle, 
western, northern and southern corn rootworms. 

Researchers have shown that MLN occurrence tends to 
be influenced by rainfall, temperature, soil moisture and 
slope. The amount of damage caused by MCMV pathogen 
is strongly correlated with high precipitation levels [19]. 
MLN was restricted to areas which received less than 
50mm of rain. MLN epidemics in Kansas, USA, followed 
years with above-normal rainfall [20]. MCMV appeared 
viable under conditions as low as 0 mm to 813mm [21]. 
Temperatures between 28 to 31 degrees favor MCMV 
infections [22]. In growth chambers, high temperatures 
favored rapid spread of MCMV. MCMV was profound in 
annual mean temperatures ranging between 11.6-23.9 
degrees and mean temperature of coldest quarter ranging 
between 9.6 to 22.2 degrees Celsius [21]. Low moisture 
content in the soil results in maize plants becoming more 
susceptible to MLN. MLN is more severe during periods of 
soil moisture stress [23,24]. Population of corn rootworms 
vary according to whether samples are from upland or 
lowland crop fields[25]. Significant lower populations of 
thrips are observed during rainy and cold seasons than 
during hot and dry seasons [26,27,28]. Heavy rainfall 
negatively affects thrips populations by killing larvae and 
suppressing adult flight [28,29,30]. Rainfall positively 
influences thrips population [26]. Thrips are significantly 
influenced by increased temperature [31]. Increased 
temperatures throughout spring resulted in greater thrips 
activity and population growth [28,32,33]. Mean 
precipitation and temperature are strongly associated with 
population dynamics of cereal aphids [34]. Aphid 
population density is positively affected by rainfall [35]. An 
average temperature of 18.06 degrees (Maximum 22.81 and 
Minimum 13.31) provides conductive conditions for aphid 
incidence [36]. Maximum temperature is positively 
correlated with aphid population and minimum temperature 
is negatively correlated with aphid population [37]. Slope 
explains a significant variation in aphid population density 
within the crop fields [38]. Leafhopper population has a 
significant and positive correlation with rainfall and a 
negative association with temperature [39]. A forward 
stepwise regression analysis detected a negative 
contribution of total precipitation to the estimated density of 
leaf hoppers [40]. The population of leaf hoppers is 
correlated with rainfall and temperature [41]. Varying  
day-night temperatures accelerated larval development of 
corn rootworms due to direct temperature effects [42]. 
Corn rootworm adults prefer to lay eggs in moist rather 

than in dry soils [43]. Females lay eggs near the soil 
surface if soil moisture is high [43]. 

The first study to explore the landscape ecology  
and epidemiology of MCMV and MLN across Africa  
was conducted by [44] in order to understand the 
spatiotemporal distribution of MCMV and MLN risk  
in Africa. An ecological niche model based on MLN 
incidence point data using genetic algorithm for rule-set 
prediction model (GARP) was used [44]. Inputs included 
12 bioclimatic variables. MCMV and MLN-positive 
incidences across the region corresponded to a variety of 
temperature and precipitation regimes in the semi-arid  
and sub-humid tropical sectors of central and eastern 
Africa. The study provided views on distribution and 
epidemiology of MCMV and MLN across Africa [44]. 
Satellite imagery combined with field-based information 
on MLN infection rates has been used to map MLN 
severity levels in Bomet County, Kenya [45]. MLN 
severity levels were mapped using in-situ data set from  
the field as training data in Random Forest. Results  
from this study indicated possibility of using LANDSAT 
and Random Forest classification to monitor spatial 
distribution of disease infestation in small scale and 
fragments agro-ecological landscapes [45]. MLN severity 
has also been mapped using Landsat data [46]. Random 
Forest classifier was optimized using variables selection 
on spectral indices and bands. Using only most relevant 
spectral indices, three MLN severity classes could be 
mapped [46]. The study showed the possibility of 
mapping maize diseases using spectral vegetation indices 
and optimized machine learning algorithms like Random 
Forest. The results could be used to understand linkages 
between MLN and underlying ecological factors for better 
knowledge on MLN disease propagation and spread in 
Kenya [46].  

The above-mentioned MLN studies [44,45,46] used 
models that did not explicitly account for spatial dependence 
and autocorrelation which often arises when observations 
are collected from points located in space. The objectives 
of this study are to spatially derive ecological variables 
leading to MLN, to investigate spatial dependence, 
autocorrelation and significance of each ecological 
variable with respect to MLN severity and to generate a 
spatially explicit MLN severity index map. This research 
is conducted in the month of March, 2017, over affected 
farmlands in Bomet County based on MLN field data at 
optimal maize growing season and phenological stage. 

2. Data and Methods 

2.1. Study Area 
Bomet County is located in the southern part of the Rift 

Valley of Kenya at latitude 0.8015° S and longitude 
35.3027° E (Figure 2). The county has a population of 
730,129 inhabitants and a geographical coverage of 
approximately 1,997.9 km² with an elevation of 6,437 
meters above sea level. Its main economic activity is 
agricultural and livestock farming. Administratively it is 
subdivided into 8 sub counties. 
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Figure 2. Study area map 

2.2. Data 
The table below shows the list of spatially derived 

ecological variables used for the study, their sources and 
spatial resolutions. 

Table 1. Data sources 

 
Ecological variables 

Variable name Units Resolution and 
source 

1 Rainfall Millimeters 5km (CHIRPS) 

2 Temperature Degrees 
Celsius 5km (MODIS) 

3 Slope Degree slope 
inclination 30m(SRTM) 

4 Soil moisture Topographic 
wetness index 30m(Landsat,USGS) 

5 Maize crop + MLN 
alternative hosts mask Acreage 30m(Landsat,USGS) 

CHIRPS, climate hazards group infrared precipitation with station data; 
SRTM, shuttle radar topography mission; MODIS, moderate resolution 
imaging spectro-radiometer; USGS, United States geological survey. 

 
Temperature data was sourced from MODIS while 

rainfall data was sourced from CHIRPS. Slope was 
sourced and derived [47] from SRTM. Multi-spectral, 
radiometrically corrected, 30m spatial resolution Landsat 
data sets that have spectral bands ranging in the visible 
bands to infra-red bands were utilized in this research. 
Radiometric calibration was done for each spectral  
band by converting image digital numbers to surface 
reflectance. Topographical wetness was derived from 
radiometrically corrected Landsat data. Tasseled cap 
wetness transformations were applied to spectral bands 
based on the coefficients [48]. The values were then 
standardized by a rescaling factor creating a range 
between 0 to 1 where 1 represents areas of high 
topographical wetness value and 0 areas with low wetness 
value. Random Forest classification algorithm [45,46] was 
used in differentiation of variations in spectral signatures 

between crops and non-crops hence distinguishing maize 
crops and MLN alternative hosts from other vegetation 
cover classes (Figure 3). 

 

Figure 3. Spatially derived maize crop and alternative hosts mask 

Ecological variables were standardized based on the 
benefits formula described by [49]. 

 ( ) ( )/  new min max minX X X X X= − −  

Formula 2 Variable standardization formula 
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Where X is the value of the pixel being standardized, 
Xmin is the minimum value while Xmax is the maximum 
value of the layer. Each variable was resampled to 100 
meters spatial resolution.  

2.3. Methods 
MLN disease severity is the percentage of relevant host 

tissues covered by MLN symptom or lesion or damaged 
by the disease [50]. Severity results from the number and 
size of the lesions. MLN disease severity is an indicator of 
damage caused by the disease. 

MLN disease severity = [sum of all disease rating/ 
(total number of rating x maximum disease grade)] x 100. 

Formula 1 Crop disease severity formula 
A standardized 1-5 MLN disease rating developed by 

CIMMYT [51].was used to derive MLN disease severity. 
MLN survey was conducted in electronic format using 
handheld GPS equipment [51] with an aim of collecting 
MLN disease ratings over sampled crop fields that would 
be used to derive MLN disease severity. Sampling enabled 
choosing which subjects to measure while ground 
referencing enabled finding and measuring the subjects  
in question [52]. Ground reference MLN data would 
generally not be collected for large portions of the entire 
project area therefore sampling was used [53]. The criteria 
considered for evaluating the suitability of MLN ground 
reference data was based on [53]. The criteria ensured that; 
the data collection method is systematic and representative 
of the entire area, the method has an element of 
randomness to avoid selection bias, a sufficient number of 
reference samples are utilized to provide an appropriate 
sample density and the reference data is reasonably 
contemporary with respect to the acquisition date of the 
spatial ecological variables. Proportionate stratified sampling 
technique was applied which randomly distributed MLN 
points across the sampling zone and across the spatially 
derived crop mask (Figure 3). The sampled MLN points with 
respective MLN severities were used to extract ecological 
variables from respective geospatial layers in Table 1 and 
subsequently used for spatial regression analysis. 

The spatial regression model [54] involved; choosing a 
neighbourhood criterion, creating spatial weight matrix, 
examining spatial autocorrelation, applying weights matrix 
and predicting using the spatial regression model. Spatial 
error model was appropriate for this study particularly in 
correcting for spatial autocorrelation due to the use of 
spatial data [54]. The model included spatially correlated errors 
due to unobservable features or omitted variables associated 
with location. The error term ε had the spatial structure 
therefore incorporating spatial effects through error term. 

 
y x

W
β ε

ε λ ε ξ
= +
= +

 

Formula 4 Spatial error model formula 
Where: 
W is the spatial weight matrix 
x is the predictor variable 
y is the response variable; MLN disease severity 
ε is vector of error terms, spatially weighted using the 
weights matrix (W) 
ξ is vector of uncorrelated error terms 
β is the spatial error coefficient  

λ is the spatial dependence parameter. 
The spatial error model controlled spatial autocorrelation 

in the residuals, thus it controlled autocorrelation in both 
MLN severities and the ecological variables [55]. Moran’s 
I statistic was used to test if MLN severity across the 
sampled farm fields had spatial dependence [54]. 

 ( )( )1 1N / e e / e eoI S W=  

Formula 5 Moran’s I 
So is a standardization factor that corresponds to the 

sum of weights for the non-zero cross-products: 
So=∑i∑jwij. For row-standardized weights So would equal 
N, so I= (e1We/e1e ). The spatial weight matrix provided 
information about which MLN affected farm fields were 
considered neighbors and also how their MLN severities 
are related to each other [54]. The spatial weight matrix 
was defined as W with elements wij indicating whether 
observations i and j are spatially close. The spatial weight 
matrices were row-standardized which meant the weights 
were summed up to one on each row. The weight matrix 
was constructed based on distance where units with 
distance dij received a weight that is inversely proportional 
to the distance between the units and 0 if they were 
beyond a certain distance band D [54]. 

 
1/ if the distance between and D,

0 otherwise
ij

ij
d i j

w
<= 


 

Formula 6 Spatial weight matrix based on distance 
MLN severity field points were split into a 80:20 

sample with 120 training points and 80 test points.The 
spatial model was built on the 80% training data and 
subsequently the model built was used to predict MLN 
disease severity on test data. Through predicting a fitted 
model to a raster data, MLN severity prediction was 
derived with spatial error model object using raster object 
with predictor ecological variables [56]. By calculating 
accuracy measures and error rates, the prediction accuracy 
of the spatial regression model was determined. A 
correlation between actual MLN disease severity and 
predicted MLN disease severity formed the basis for 
measurement of accuracy. Neither R2 nor adjusted R2 was 
utilised in assessing the spatial regression model therefore 
Akaike Information Criteria (AIC) was used [57]. 

 

Figure 4. Derived MLN field points 
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3. Results 
Based on distance between MLN affected farm fields, 

the spatial regression model predicted MLN disease 
severity for each farm field based on distance where units 
within a specified radius were assigned a spatial weight. 
It is evident that MLN severity becomes less correlated 
the further away from each affected farm field. Varying 
nearest neighbour distances 1,3,4,7,21,79,81,83,84,89,97 and 
100 were noted to have significant (p<0.05) correlations with 
MLN severity. 

Moran’s I test tested if the ecological variables have 
spatial dependence. The test confirmed that there is 
significant (p<0.05) spatial dependence among ecological 

variables. This implies that MLN affected farm fields that 
are close to each other influence each other more in as far 
as MLN severity is concerned. It is observed that MLN 
severities collected are not independent, but rather 
positively spatially dependent, which means that MLN 
severity from one farm location tend to exhibit values 
similar to those from nearby farm locations. Simply, farms 
located nearby tend to have similar MLN severities than 
those separated by larger distances. A normal Moran’s I 
test plot should have a 45 degrees line i.e. a perfect 
prediction. This is not the case as a result of spatial 
dependence. Figure 6 suggests that an actual MLN 
severity value x would be predicted to value x1 using the 
spatial values derived from the ecological variables. 

 

Figure 5. MLN spatial dependence 

 

Figure 6. Moran’s I test 
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MLN disease severity was used as the response variable 
while temperature, rainfall, slope and soil moisture were 
used as predictor variables. A spatial regression model 
was used to establish geostatistical significance between 
MLN disease severity and the four ecological response 
variables. The probability level of each variable was set at 
p < 0.05 with soil moisture, rainfall and slope as the most 
significant ecological variables that explained MLN 
disease severity. From spatial error model estimates, soil 
moisture, rainfall and slope variables have a negative 
influence on MLN severity while temperature has a 
positive influence, with one unit increase in temperature 
increasing MLN severity by 0.0004%, one unit increase in 
rainfall decreasing MLN severity by 0.03%, one unit 
increase in soil moisture decreasing MLN severity by 
0.4245 and lastly one unit increase in slope decreasing 
MLN severity by 0.0492%. Collinearity test reveals that 
none of the ecological variables is correlated with the 
other. This is explained by the values of variance inflation 
factor (VIF); which quantifies the severity of collinearity, 
computed for each variable. The values are lower than 10 
for each predictor variable. In addition the average VIF 
value is 1.611, which is closer to 1 indicating that 
collinearity is not a problem for the model. 

 

Figure 7. MLN disease severity index map 

MLN severity prediction was derived with spatial error 
model object using raster object with three most significant 
predictor ecological variables. The raster data was re-classified 
into four MLN severity classes using the Jenks natural break 
algorithm, which maximizes the variance in the data for 
subsequent classification. Figure 7 shows per pixel MLN 
severity map over the study region derived from amalgamating 
and weighting the three most significant ecological variables. 
High severity areas are illustrated in dark brownish colors, 

while low severity areas, colored light brownish, illustrate 
low MLN severity areas. High MLN severity areas were 
found to be in Chebunyo, Sigor and Kipreres. 

Residuals from the spatial error model were mapped in 
order to look for geographical patterns that, if they exist, 
this would violate the assumption of independent errors 
and potentially affect both the estimate of the model 
coefficients and their standard errors. Residuals are the 
differences between MLN severity predicted by the model 
and actual observed MLN severity. The mapped residuals 
explain the degree at which the residual value for any 
MLN affected farm field correlate with the mean residual 
value for its nearest MLN affected farm field. The mapped 
residuals from the spatial error model display evidence of 
positive spatial autocorrelation. The geographical pattern 
shows significant correlation between the residual value at 
any one farm field and that of its nearest neighboring farm 
field. This is confirmed by the global Moran I test for 
regression residuals which is significant (p< 0.05). 

 

Figure 8. Spatial error model residual map 

The spatial error model has an Akaike’s Information 
Criterion of -641.6, R squared at 80.78%, a mean absolute 
percentage error (MAPE) of 51.52%, minimum-maximum 
accuracy of 95.06% and a correlation between actual 
MLN severity and predicted MLN severity at 92.62%. 

5. Discussions and Conclusions 

MLN is attributed to three ecological variables namely 
soil moisture, rainfall and slope. This study has demonstrated 
the strengths and merits of monitoring and predicting 
MLN from ‘space’ using spatially explicit ecological 
variables and spatial modelling techniques. From spatial 

 



257 Journal of Geosciences and Geomatics  

regression analysis, significance of soil moisture, rainfall 
and slope as key variables for MLN disease severity 
suggests that monitoring these ecological variables may be 
important in regard to predicting MLN outbreaks. From 
the spatial error model estimates, one unit increase in 
temperature increases MLN severity by 0.0004%, one unit 
increase in rainfall decreases MLN severity by 0.03%, one 
unit increase in soil moisture decreases MLN severity by 
0.4245 and lastly one unit increase in slope decreases 
MLN severity by 0.0492%. On average, MLN attacks 
maize crops at 27.5 degrees Celsius, 85.6 millimetres 
rainfall, at an altitude of 1888.5 meters above sea level 
and at soil moisture levels of -1085.9 based on the 
topographical wetness index. From the spatial model, 
441,394 acres of cropped fields had no MLN severity; 
133,333 acres of crop fields had low MLN severity, 
64,388 acres moderate severity while 9323 acres of 
cropped fields had high MLN severity. High MLN 
severity is largely experienced in Chebunyo, Sigor and 
Kipreres sub-counties and therefore MLN control 
measures should focus in these areas. The ecological 
variables have spatial dependence in that MLN affected 
farm fields that are close to each other influence each 
other more in as far as MLN severity is concerned. 

Remote sensing coupled with spatial analysis is a good 
and readily available tool for MLN severity analysis as 
compared to conventional ground surveys. With the 
advancement in geostatistical models such as spatial 
regression, MLN can be attributed to its cause factors and 
spatial patterns established. Moreover, such studies help in 
epidemiological surveillance which is vital in developing 
any MLN control strategies. With the use of spatial 
analysis and remote sensing, such studies could be geared 
towards site-specific MLN control measures. MLN 
severity map can be utilized by multi-stakeholders to 
guide on location-based interventions, with emphasis on 
high severity areas. Farmers could be advised to plant 
maize at favourable MLN-free model-derived environmental 
conditions. At high-to-medium MLN severities, farmers 
are advised to break from planting maize for at least two 
planting seasons so as to avoid contamination. It is at 
these locations characterised by high-to-medium MLN 
severities that farmers are also advised to use MLN 
control measures such as pesticides to ward off MLN 
insect vectors, planting alternative crops such as sorghum, 
beans and millet and early planting at low-to-zero model-
derived environmental conditions. 

This study relied on MLN disease severity data as the 
response variable. Further research is required based on 
MLN presence and absence or any other relevant response 
variable using spatial and ecological models that account 
for spatial dependence and autocorrelation in order to 
generate comparable MLN risk maps for Bomet County. 
The study only shows 2017 MLN severity map derived 
from spatial error model hence there is need for 
spatiotemporal analysis to show MLN trends from  
the initial year of observation to date, for a clearer 
understanding of MLN. The study lacks human behavioural 
variables such as farm practices e.g. use of pesticides as a 
MLN severity mitigation measure. Therefore, there is 
need to do further research on farm practices as variables 
leading to MLN. Further studies should also investigate 

the role of other potential spatially derived ecological 
variables with relevant significance statistical levels, 
better spatial and temporal resolutions in monitoring and 
predicting of MLN. The model employed in this study 
could be up-scaled and replicated to other MLN prone 
areas both in Kenya and in eastern southern Africa. 
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