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Abstract  In Ghana’s local Geodetic Reference Network, the standard forward transformation equation has played 
a major role in coordinate transformation between World Geodetic System 1984 (WGS84) and local geodetic datum. 
Thus, it is an initial step in forward conversion of geodetic coordinates (ϕ, λ, h) to Cartesian coordinates (X, Y, Z) in 
transformation from global to local datum and vice versa. Several studies in the recent decades have been conducted 
on converting Cartesian coordinates to geodetic coordinates (reverse procedure) through the utilisation of iterative, 
approximate, closed form, vector-based and computational intelligence algorithms. However, based on the existing 
literature covered pertaining to this present study, it was found that the existing knowledge do not fully adhere to the 
issue of evaluating alternative techniques in the case of the forward conversion. Hence, the aim of this present study 
was to explore the coordinate conversion performance of the Multivariate Adaptive Regression Splines (MARS) and 
Multiple Linear Regression (MLR). The performance of each model was assessed based on statistical indicators of 
Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Bias Error (MBE), Mean Absolute Error 
(MAE), Standard Deviation (SD), Noise to Signal Ratio (NSR), Correlation Coefficient (R), and Correlation of 
Determination (R2). The statistical findings revealed that the MARS and MLR offered satisfactory prediction of 
Cartesian coordinates. However, the MLR compared to MARS showed better stability and more accurate prediction 
results. From the results of this present study, the main conclusion drawn is that, MLR provides a promising 
alternative in the forward conversion of geodetic coordinates into Cartesian coordinates. Therefore, the capability of 
MLR as a powerful tool for solving majority of function approximation problems in mathematical geodesy has been 
demonstrated in this present study. 
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1. Introduction 

Global Navigation Satellite System (GNSS) such as the 
Global Positioning System (GPS) in capturing locations of 
stationary and non-stationary objects on, above, and 
beneath the Earth’s surface has increased the possibility of 
obtaining coordinate positions with improved high 
accuracy and precision [1]. These satellite positioning 
technologies provide numerous amounts of spatio-
temporal datums in either curvilinear geodetic coordinates 
(ϕ, λ, h) or Cartesian coordinate (X, Y, Z) system. In order 
to solve most practical GPS navigation, geodetic, 
cartographical and astro-observation problems, it is 
important to convert geodetic coordinates (ϕ, λ, h) into 
Cartesian coordinates (X, Y.Z) and vice versa [1,2,3,4,5]. 

The process of converting geodetic coordinates to 
Cartesian coordinates is known as the forward conversion 
[1]. 

The forward conversion is an initial step in converting 
the GPS position measurement to the local coordinate 
system [6,7]. This is because before the invention of the 
GPS, local geodetic datums were established based on 
traditional surveying techniques such as triangulation, 
trilateration, traversing, astronomical observation and 
among others [8,9]. Hence, the local geodetic datum 
involved data in only geodetic coordinates without the 
existence of Cartesian coordinates [1]. This prevalent 
situation has been problematic over the years to utilize 
GPS coordinates based on the global datum of world 
geodetic system 1984 (WGS84) into a local geodetic 
system. The first approach in utilizing GPS data locally 
requires the determination of transformation parameters. 
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The most widely adopted techniques in the past decades in 
literature for such application include the similarity 
models of Bursa-Wolf, Molodensky-Badekas, Veis model 
and three-dimensional Affine [10-16]. However, the major 
concern here is that, before these aforementioned 
similarity models could be applied, there is the need to 
convert all the geodetic dataset of common points to 
Cartesian coordinates. It must be well noted here that, 
without such conversion, the similarity models cannot be 
adopted in the transformation parameter determination for 
coordinate transformation between the global and local 
datums [1]. 

In order to accomplish this task, the standard forward 
transformation equation [17,18,19,20] given by Equation 
(1) to (3) are mainly widely used technique as the first 
step in the coordinate transformation procedure given as: 

 ( )X N h Cos Cosϕ λ= +  (1) 

 ( )Y N h Cos Sinϕ λ= +  (2) 

 2(1 ) ]sinZ N e h ϕ = − +   (3) 

Where ϕ , λ  and h  are the geodetic latitude, geodetic 
longitude and geodetic height while X, Y, Z are the 
Cartesian coordinates. N in Equation (1) to (3) is the 
radius of curvature in the prime vertical [1] defined by 
Equation (4) as: 

 
2 21

aN
e Sin ϕ

=
−

 (4) 

Where e  is the first eccentricity expressed by Equation (5) 
as: 

 
2 2a be
a
−

=  (5) 

Where a and b  are the semi-major axis and semi-minor 
axis of the geodetic ellipsoid [1]. 

Although Equation (1) to (3) are the mostly adopted 
technique in geodetic studies, there exist other numerical 
methods such as Artificial Neural Network (ANN), 
Multivariate Adaptive Regression Splines (MARS), 
Multiple Linear Regression (MLR) and many more that 
can serve as alternative approach. It is well acknowledged 
that the introduction of artificial intelligence techniques 
applications has revolutionized the field of mathematical 
geodesy in terms of its attainable accuracy and also in 
most instance, its dominance over the empirical methods. 
This assertion is well archived in existing technical papers 
of mathematical geodesy. For example, ANN has been 
applied to solve most coordinate transformation problems 
global and local datums [1,9,21-29], and transforming 
from geodetic coordinates to Cartesian coordinates [2] and 
many more. ANNs are been criticized for its long training 
process in achieving the optimal network’s topology, and 
it is not easy to identify the relative importance of 
potential input variables, and certain interpretive 
difficulties [30,31]. 

There has been a surge of interests within the geodetic 
community in the recent decades in converting Cartesian 
coordinates into geodetic coordinates and this process is 
known as the reverse coordinate conversion technique. 

Several studies have been conducted such as iterative, 
approximate, closed form, vector-based algorithms 
[32,33,34,35,36] and artificial intelligence algorithms 
[1,2]. Hence, Multivariate Adaptive Regression Splines 
(MARS) and Multiple linear regression (MLR) were 
applied in this study to ascertain its ability to convert 
geodetic coordinates to Cartesian coordinates (forward 
conversion). 

Multivariate Adaptive Regression Splines (MARS) is 
an adaptive modelling process invented by [37] used for 
non-linear relationships. In addition, MARS divides the 
predictor variables into piece-wise linear segments to 
describe non-linear relationships between the predictor 
and the dependent variable [31,38]. There is limited 
availability of literature of MARS in transformation of 
coordinates studies but many studies have successfully 
applied MARS for solving different problems in 
engineering. Some of the areas of applications include 
estimating energy demand [39], slope stability analysis 
[31,40,41,42], landslide susceptibility mapping [43], water 
pollution prediction [44], earthquake modelling [45], 
studying ecological variables [46], region spatio-temporal 
mapping [47], modelling of the ionosphere [48], 
geothermal prospect [49] and so on. 

Multiple Linear Regression technique (MLR) was also 
applied in this study as an alternative mathematical 
procedure to carry out the forward conversion from 
geodetic coordinates to Cartesian coordinates. Several 
studies have been carried out using MLR and Simple 
Linear Regression (SLR) procedures in coordinate 
transformation from global to local datum and vice versa 
[1,50,51,52,53]. It is well acknowledged that, the regression 
techniques achievable are applicable to surveying and 
mapping related works [1]. In addition, this present study 
adopted the MLR over the SLR based on the multiple 
input parameters utilized in Equation (1) to (3) to carry out 
the forward coordinate conversion. This will help maintain 
system consistency between MLR and Equation (1) to (3). 
The objective of this present study is to evaluate and 
compare the performance of MARS and MLR models in 
converting geodetic coordinates to Cartesian coordinates. 

MLR have been applied in coordinate transformation 
but MARS have not been applied in both coordinate 
transformation and in coordinate conversion. The difference 
is that, in coordinate conversion as in the case of this 
present study, there is no change of datum and the geodetic 
ellipsoid parameters chosen for the transformation process 
are all based on the same geodetic datum [1]. That is, the 
geodetic datums used in coordinate transformation, the 
source and target coordinate reference systems are all 
based on different datums and the transformation 
parameters are empirically determined and thus maybe 
subject to measurement errors [1]. 

The existing knowledge and publications have not fully 
addressed the issue of applying alternative techniques in 
the forward conversion of geodetic coordinates to 
Cartesian coordinates. In addition, upon careful review of 
existing studies, the authors realized that the utilization of 
the MARS and MLR techniques have not applied as a 
practical alternative technology to the existing approaches. 
This present study for the first time explored the 
utilization of the MARS and MLR in the forward 
conversion of geodetic coordinates to Cartesian 
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coordinates. To achieve the aim of this present study, the 
MARS and MLR methods were applied. This study also 
highlights the comparison between MARS and MLR 
through the use of a set of training and test data based on 
the results of statistic performance indicators such as mean 
(M), mean square error (MSE), root mean square error 
(RMSE), mean bias error (MBE), mean absolute error 
(MAE), standard deviation (SD), noise to signal ratio 
(NSR), correlation of coefficient (R), and correlation of 
determination (R2). The finding of these two models will 
reveal the working efficiency of the two models for 
converting geodetic coordinate to Cartesian coordinates. 
Hence this study will serve as an added contribution to 
existing knowledge of MARS and MLR in mathematical 
geodesy. 

2. Resources and Methods Used 

The study area (Figure 1) is situated in the mining town 
of Tarkwa which is the administrative capital of the 
Tarkwa Nsuaem Municipal Assembly in the Western 
Region of Ghana. It is found in the Southwest of Ghana 

with geographical coordinates between longitudes  
1° 59′ 00″ W and latitude 5° 18′ 00″ N and is 78 m above 
mean sea level. It is about 85 km from Takoradi, which is 
the regional capital, 233 km from Kumasi and about 317 
km from Accra [52]. The topography is generally 
described as remarkable series of ridges and valleys. The 
ridges are formed by the Banket and Tarkwa Phyllites 
whereas upper quartzite and Huni Sandstone are present in 
the valleys. Surface gradients of the ridges are generally 
very close to the Banket and Tarkwa Phyllites. Its 
environs generally lie within the mountain ranges covered 
by thick forest interjected by undulating terrain with few 
scarps. The study area has a South-western Equatorial 
climate with seasons influenced by the moist South-West 
Monsoon winds from the Atlantic Ocean and the North-
East Trade Winds. The mean rainfall is approximately 
1500 mm with peaks of more than 1700 mm in June and 
October. Between November and February, the rainfall 
pattern decrease to between 20 mm to 90 mm [54]. The 
mean annual temperature is approximately 25°C with 
small daily temperature variations. Relative humidity 
varies from 61 % in January to a maximum of 80 % in 
August and September [52,55]. 

 
Figure 1. Study Area 
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In this present study, a total of 328 GPS geodetic 
coordinates (ϕ, λ, h) collected by field measurement in 
Tarkwa, Ghana, situated in West Africa, were used in the 
MARS and MLR model formulation. It is well 
acknowledged that one of the contributing factors 
affecting the estimation accuracy of models is related to 
the quality of datasets used in model-building and 
selection of appropriate inputs parameters [56,57]. 
Therefore, to ensure that the obtained geodetic coordinate 
(ϕ, λ, h) data from the GPS receivers are reliable and 
accurate, several factors such as checking of overhead 
obstruction, obstruction, observation period, observation 
period, observation principles and techniques as suggested 
by many researchers [58]. In addition, all potential issues 
relating to GPS survey work were also considered. The 
next factor considered in this present study was the 
identification of the input parameters for the MARS and 
MLR training. It must be noted here that the input 
parameters act as control variables with an influence on 
the desired output of the models. Hence, the input variable 
which are the (independent variables) should represent the 
condition for which training of the two models are done 
[59]. Consequently, the 328 GPS points measurement was 
first transformed into Cartesian coordinates (X, Y, Z) 
using Equation (1) to (3). The GPS world geodetic system 
1984 (WGS84) semi-major axis, a  and semi-minor axis, 
b  parameter values of 6378137.0 m and 6378299.99899 
m were implemented in Equation (1) to (3). It is important 
to note that, in order for the MARS and MLR models to 
have consistency with Equation (1) to (3), the radius of 
curvature in the prime vertical ( N ) and the square of the 

square of the first eccentricity ( )2e  values were estimated 

separately. With this in mind, ( )2, , , ,h N eϕ λ  was used as 

the input layer data while ( ), ,X Y Z  was used as the 
output layer data. Table 1 and Table 2 are sample of the 
dataset that was used for the study. 

Table 1. GPS Coordinates 

POINT ID LONGITUDE LATITUDE HEIGHT 
P1 -2.001587 5.299648 105.0657 
P2 -2.001814 5.299471 106.1565 
P3 -2.001831 5.299346 93.3399 
P4 -2.001931 5.299505 106.3422 
P5 -2.002049 5.299301 109.1203 
P6 -2.002202 5.299204 107.6099 
P7 -2.002393 5.299211 105.6151 
P8 -2.001292 5.299563 106.3142 
P9 -2.001984 5.298738 103.9401 

P10 -2.002044 5.298839 106.0406 

Table 2. Cartesian Coordinates 

POINT ID X Y Z 
P1 6347283.0440 221828.0487 585195.8577 
P2 6347285.0490 221853.3320 585176.5450 
P3 6347273.5130 221854.7280 585161.5417 
P4 6347284.4380 221866.2369 585180.2757 
P5 6347288.8300 221879.4586 585158.0634 
P6 6347287.7270 221896.3946 585147.2065 
P7 6347284.9220 221917.5324 585147.8686 
P8 6347286.2870 221795.4442 585186.7128 
P9 6347289.6670 221872.3381 585095.6314 

P10 6347290.5010 221879.0197 585106.8719 

2.1. Methods 

2.1.1. Multivariate Adaptive Regression Splines 
(MARS) 

The MARS model uses a nonparametric modelling 
approach that does not require assumptions about the form 
of the relationship between the independent and dependent 
variables [37,60]. The MARS model works by dividing 
the ranges of the explanatory variables into regions and by 
producing for each of these regions a linear regression 
equations [60]. The breaks values between each regions 
are called knots, whiles the term basis functions (BFs) are 
used to demonstrate each distinct interval of the predictors 
[45,60]. BFs are functions of the following form as 
denoted by Equation (1): 

 max(0, )x k− or max(0, )k x−  (6) 

Where x is an independent variable and k is a constant 
corresponding to a knot [60]. The general formula for the 
MARS model is given by Equation (7) as denoted by [31]: 

 0
1

( ) ( )
N

n n
n

y f x a xα β
=

= = +∑  (7) 

Where, y  is the dependent variable predicted by the 
function ( )f x , 0a  is a constant, and N  is the number of 
terms, each of them formed by a coefficient nα  and 

( )n xβ  is an individual basis functions or a product of two 
or more BFs. The MARS model was developed in two 
steps. In the first step, the forward algorithm, basis 
functions are presented to define Equation (7). Many basis 
functions are added in Equation (7) in order to get a better 
result [45,60]. The developed MARS may experience 
overfitting due to the large number of basis functions. In 
order to mitigate this problem, the second step that is the 
backward algorithm prevents overfitting by removing 
redundant basis functions from Equation (7). The MARS 
model adopts Generalized Cross-Validation (GCV) to 
delete the redundant basis functions [61]. The expression 
of GCV is written as given by Equation (8) [62]: 
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2

1
2
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1

N

i i
i
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N
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N
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 − 
=

 
− 
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 (8) 

Where N  is the number of data and ( )C H  is a 
complexity penalty that increases with the number of basis 
function (BFs) in the model and which is defined as 
denoted by Equation (9): 

 ( ) ( 1)C H h dH= + +  (9) 

Where d  is a penalty for each BFs included into the 
model and H  is the number of basis functions in 
Equation (7) [37,61]. 

2.1.2. Multiple Linear Regression (MLR) 
The multiple linear regression (MLR) is an extensively 

used techniques in geoscientific studies for articulating the 
dependence of a response variable on several explanatory 
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variables [1]. It fits a linear combination of the 
components of multiple input parameters to a single 
output parameter defined by Equation (10) as: 

 0
1

M

i i
i

y xα β
=

= +∑  (10) 

Where 0α is the intercept (values when all the 
independent variables are zero) with iβ values denoting 
the regression coefficients which were obtained in this 
present study using the least square technique. In Equation 
(10), i is an integer varying from 1 to M, where M is the 
total number of observations. Since there are several 
variables that can be used as candidates for predictor 
variables in the MLR model formulation, it would be 
demanding having to try every possible combination of 
variables [1]. 

2.1.3. Model Performance Assessment 
In order to compare the MARS and MLR models 

results, the residuals calculated between the desired 
outputs and the outputs produced by the various 
techniques were utilized. Hence, to make an objective 
assessment of the models, performance criteria indices 
(PCI) of mean error (ME), mean square error (MSE), root 
mean square error (RMSE), mean bias error (MBE), 
standard deviation (SD), noise to signal ratio (NSR), 
correlation coefficient (R), correlation of determination 
(R2) were adopted. Their mathematical representation is 
given by Equation (11) as: 

 ( )
1

1 n

i i
i

ME
n

α β
=

= −∑  (11) 

 2
1

1

1 ( )
n

i
i

MSE
n

α β
=

= −∑   (12) 

 
2ERMSE

n
= ∑  (13) 

 EMBE
n

= ∑   (14) 

 E
MAE

n
= ∑   (15) 

 
( )2

1

1
1

n

i
SD e e

n =
= −

− ∑  (16) 

 Average of theresidualsSNR
SD of theresiduals

=  (17) 

With reference to Equations (11) to (15), n is the total 
number of points, iα and iβ  are the measured variable 
and estimated variable produced by the models. α
represent the residuals between the measured and 
estimated variables and α is the mean value of the 
residuals.  in Equation (15) represents the absolute 
value of the residuals estimated between iα  and iβ .The 
correlation coefficient (R) is given by Equation (18) as: 

 
( )( )

( ) ( )

1
2

2
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N
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i
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 − × − 
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∑ ∑
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Where N  is the total number of test examples presented 
to the learning algorithms, α and β  are the measured and 
predicted plane coordinates from the various procedures, 
while α and β  are the mean of the predicted plane 
coordinates. e  in Equation (16) denotes the residual 
between the measured and predicted plane coordinates, 
and e  is the average of the residual. The R2 was 
computed by Equation (19) as: 
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3. Results and Discussions 

The training and testing results for the two models are 
represented by Figure 2 to Figure 7, sample of the results 
is shown in Table 3 to Table 5 and their statistical analysis 
are tabulated in Table 6 and Table below. From the figures 
below, it was observed that, the performance of MLR was 
encouraging as compared to MARS. MLR achieved 
satisfactory results with high accuracy as compare to 
MARS which achieved good results but with less 
accuracy predictive performance. 

 
Figure 2. Training results by the two models 
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Figure 3. Testing results by the two models 

Table 3. Sample of the results by the two models 

ACTUAL MLR RESIDUAL ACTUAL MARS RESIDUAL 
6347283.044 6347283.050 -0.00607 6347283.044 6347293 -9.7013 
6347285.049 6347285.050 -0.00536 6347285.049 6347293 -7.6963 
6347273.513 6347273.520 -0.00667 6347273.513 6347293 -19.2323 
6347284.438 6347284.440 -0.00556 6347284.438 6347293 -8.3073 
6347288.830 6347288.830 -0.00400 6347288.830 6347293 -3.9153 
6347287.727 6347287.730 -0.00461 6347287.727 6347293 -5.0183 
6347284.922 6347284.930 -0.00494 6347284.922 6347293 -7.8233 
6347286.287 6347286.290 -0.00600 6347286.287 6347293 -6.4583 
6347289.667 6347289.670 -0.00414 6347289.667 6347293 -3.0783 
6347290.501 6347290.510 -0.00408 6347290.501 6347293 -2.2443 

 

Figure 4. Training results by the two models 

 

Figure 5. Testing results by the two models 
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From Figure 2 and Figure 3, it can be observed that 
MLR model has achieved better results in estimating the 
X coordinates as compared to the MARS model. 25 basis 
function was used in the formulation of the MARS model. 
The final equation that was obtained for the training and 
testing by the MARS model is given by Equation 20: 

 
1

0
1

( ) .i i
n

y i a α β
=

= +∑  (20) 

The optimal equation developed for the training and 
testing by the MLR model is given by Equation 21: 

 0 1 2 3 4( ) ( ) ( ) ( ) ( ).i i i iy i a a a a h a Nφ λ= − × − × + × − × (21) 

The results achieved by the two models in estimating Y 
coordinates is represented by Figure 4 and Figure 5. 
Sample of the results is tabulated in Table 4 below. From 
the results, it was observed that, the MLR achieved better 
results in estimating the Y coordinates as compared to the 
MARS model. 

The results achieved by the two models in estimating 
the Z coordinates is represented by Figure 6 and Figure 7. 
Sample of their results is tabulated in Table 5 below. From 
the Figure 6 and Figure 7, it can be observed that MLR 
model achieved higher results in estimating the Z 
coordinates as compare to the MARS model which 
achieved satisfactory results but with less accuracy. 

Table 4. Sample results of the two models 

ACTUAL MLR RESIDUAL ACTUAL MARS RESIDUAL 

221828.049 221828.050 -0.00082 221828.049 221873.000 -44.985 

221853.332 221853.333 -0.00083 221853.332 221873.400 -20.110 

221854.728 221854.729 -0.00068 221854.728 221873.700 -19.005 

221866.237 221866.238 -0.0090 221866.237 221873.400 -7.127 

221879.459 221879.460 -0.00093 221879.459 221873.800 5.621 

221896.395 221896.396 -0.00093 221896.395 221874.100 22.332 

221917.532 221917.533 -0.00091 221917.532 221874.000 43.488 

221795.444 221795.445 -0.00077 221795.444 221873.200 -77.785 

221872.338 221872.339 -0.00085 221872.338 221875.100 -2.803 

221879.020 221879.021 -0.00088 221879.020 221874.900 4.111 

 

Figure 6. Training results obtained by the two models 

 

Figure 7. Testing results obtained by the two models 
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Table 5. Sample results by the two models 

ACTUAL MLR RESIDUALS ACTUAL MARS RESIUDAL 
585195.8577 585195.8520 0.005745 585195.8577 585096.1000 99.7340 
585176.5450 585176.5391 0.005860 585176.5450 585094.8000 81.7640 
585161.5417 585161.5366 0.005063 585161.5417 585094.7000 66.8570 
585180.2757 585180.2698 0.005856 585180.2757 585094.1000 86.1840 
585158.0634 585158.0573 0.006052 585158.0634 585093.4000 64.6680 
585147.2065 585147.2005 0.005986 585147.2065 585092.5000 54.7150 
585147.8686 585147.8627 0.005876 585147.8686 585091.4000 56.5090 
585186.7128 585186.7070 0.005791 585186.7128 585097.9000 88.8460 
585095.6314 585095.6256 0.005799 585095.6314 585093.8000 1.8550 
585106.8719 585106.8659 0.005983 585106.8719 585093.4000 13.4500 

Table 6. Statistical results of the MLR model (Units in metres) 

PCI ME MSE RMSE MAE MBE SD NSR 
X TRAIN -0.00513 2.75E-05 0.005248 0.071624 0.071624 0.000959 5.35163 
X TEST -0.07045 0.004964 0.070458 0.265424 0.265424 0.000767 91.8605 

Y TRAIN -0.00091 8.40E-07 0.000917 0.030166 0.030166 0.0001 9.09749 
Y TEST -0.00567 3.22E-05 0.005678 0.075299 0.075299 0.000191 29.7381 

Z TRAIN 0.005944 3.53E-05 0.005947 0.077098 0.077098 0.000162 36.62004 
Z TEST 0.993016 0.986081 0.993016 0.996502 0.996502 0.00019 5220.215 

Table 7. Statistical results by the MARS model (Units in metres) 

PCI ME MSE RMSE MAE MBE SD NSR 
X TRAIN -9.38E-08 55.63725 7.459038 0.000306 0.000306 7.479038 1.25E-08 
X TEST 3.99E-09 23.69043 4.867281 6.31E-05 6.31E-05 4.892306 8.15E-10 

Y TRAIN -0.00057 8261.355 90.89199 0.023875 0.023875 79.71755 7.10E-06 
Y TEST -0.00013 2921.090 54.04711 0.011402 0.011402 54.32499 2.41E-06 

Z TRAIN -0.00052 7939.477 89.10374 0.0228035 0.022804 89.10374 5.81E-06 
Z TEST -0.00011 1651.373 40.63709 0.010488 0.010488 40.84602 2.78E-06 

 
Figure 8. Correlation results 

The statistical performance of both models is shown in 
Table 6 and Table 7. From the statistical findings, it was 
observed that MLR achieved higher performance in terms 
of accuracy. 

The correlation coefficient and correlation of 
determination which shows the relationship between the 
dependent variables (output) and independent variables 
(input) is represented by Figure 8. From the Figure 8, it 
was observed that, there was a higher relationship between 
the dependent and independent variables in estimating the 
Cartesian coordinates. 

4. Conclusions 
Transformation of geodetic coordinates whose 

reference is the World Geodetic System 1984 (WGS84) 
into a local system have been a common practice in 
mathematical geodesy for solving major problems of 
astronomic, geodetic, cartographic, navigation and datum 
related issues. This procedure is generally carried out 
using the standard forward transformation equation given 
Equation (1) to Equation (3). However, existing 
knowledge has shown that, little or no alternative 
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techniques has been carried out to serve as a substitute for 
the standard forward transformation equation. The main 
contribution in this present study is to evaluate the 
working efficiency of MARS and MLR models as a 
realistic alternative technology for converting geodetic 
coordinates to Cartesian coordinates. The utilization of 
MARS and MLR for conversion of geodetic coordinates 
to cartesian coordinates have been presented in this study. 
The statistical findings revealed that the MLR and MARS 
offered satisfactory results in estimating Cartesian 
coordinates. However, MLR compared to MARS showed 
superior stability and more accurate results. It can be 
therefore be proposed that, the MLR should be used 
instead of the MARS within the study area in the forward 
conversion of geodetic coordinates to Cartesian 
coordinates. On the basis of the analysis achieved in this 
present study, it has demonstrated that geodetic longitude 
(λ), geodetic latitude (ϕ), geodetic height (h), radius of 
curvature (N) in the prime vertical and first eccentricity  
(e) squared, combined into MLR could produce accurate 
estimate of Cartesian coordinates. Therefore, this study 
does not only have a localized significance but will also 
open up more scientific discourse into the applications of 
MLR and MARS in mathematical geodesy within the 
geoscientific community. 
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