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Abstract  The concept of orthometric heights system determination plays a major key role in geodesy, and it has 
broad applications in various fields and activities. In geodesy, one significant quantity is the orthometric height, the 
height above or below the geoid along the gravity plumbline. Conventionally, the orthometric height is determined 
by gravimetry and levelling techniques. However, the aforementioned techniques has its own demerits. Thus, the 
error is accumulated with the increase of the propagation measurement line, it is difficult to convert two separated 
points which is located in two continents or islands separated by sea. These techniques are tedious, time consuming 
and expensive. In order to resolve this challenge, many researchers resort to various techniques and approaches of 
obtaining orthometric heights for an area using various mathematical models. It is in this quest that, this study seek 
to estimate orthometric heights of a mine by utilizing plausible alternative techniques based on artificial neural 
networks (ANN), multivariate adaptive regression splines (MARS), polynomial regression models and multiple 
linear regression (MLR). The working efficiency and performance of each model has been assessed based on 
statistical indicators of Mean (M), Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Bias Error 
(MBE), Mean Absolute Error (MAE), Standard Deviation (SD), Correlation coefficient (R), Correction of 
determination (R2), and Signal to Noise Ratio (SNR). The statistical findings reveal that all the models produce 
satisfactory results in estimating the orthometric heights in the mine. MARS and ANN models compare to the MLR 
and polynomial models achieved higher results in terms of accuracy with mean and standard deviation of -
0.000001888 m, +2.24736 m, and +0.005835 m and 0.095063 m respectively. This study will create the opportunity 
for geospatial practitioners to recognize the significant of ANN, MARS, MLR, and Polynomial model in solving 
some of the problems in geoscientific community. 
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1. Introduction 

The orthometric height is the distance, measured 
positive outwards or negative inwards along the plumbline, 
from the geoid (zero orthometric height) to a point of 
interest, usually on the topographic surface [1,2]. The 
curved plumbline is at every point tangential to the gravity 
vector generated by the Earth, its atmosphere and rotation. 
The Orthometric height can be computed from the 
geopotential number if available, using the mean value of 
the Earth’s gravity acceleration along the plumbline 
between the geoid and the Earth’s surface [3]. 
Alternatively and more practically, it can be computed 
from spirit levelling measurements using the so-called 
orthometric correction, embedded in which is the mean 
value of gravity [4]. Ignoring levelling errors and the 
many issues, surrounding practical vertical datum 
definition [5,6], the rigorous determination of the 
orthometric height reduces to the accurate determination 

of the mean value of the Earth’s gravity acceleration along 
the plumbline between the geoid and the point of interest. 

An approximate method for the evaluation of the mean 
gravity has been discussed for more than a century. The 
first theoretical attempt is attributed to [7]. In Helmert’s 
definition of the orthometric height, the Poincare-Prey 
gravity gradient is used to evaluate the approximate value 
of mean gravity from the gravity observed on the Earth’s 
surface [1,2]. Later, [8] and [9] took into account the mean 
value of the gravimetric terrain correction within the 
topography. [1] also mentioned a general method for 
calculating mean gravity along the plumbline that includes 
the accounting for the shape of the terrain. More recently, 
[10,11,12] introduced further corrections due to vertical 
and lateral variations in the topographical mass-density. In 
addition to the above theoretical developments, numerous 
empirical studies have been published on the Orthometric 
height determination [13-21]. 

In Geodetic surveys, defining a system of heights 
consists of choosing a reference surface, adopting a 
definition with physical or geometrical significance, 
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whereby the position of the surface of the Earth is 
described as against the reference surface [22]. The level 
surfaces are not parallel, the system of orthometric heights 
is defined as that system in which the geoid is the 
reference surface and the orthometric height is the force 
line segment included between the position of the point on 
the surface of the Earth and the geoid respectively. In 
most cases geodesists are interested in the orthometric 
height as being the measured one family of surfaces, 
identified as geoid. The surface of the geoid is one of a 
whole family of surfaces or equipotential leads of the 
gravity field of the Earth. Most geodesic measurements, 
by virtue of their connection with the local reference plane, 
are influenced by the gravity field of the Earth. The local 
surfaces, as their name indicate, are surfaces with constant 
gravitational potential [23]. 

The gravity vector, or the direction of the vertical of 
any point is perpendicular to this level surface passing 
through that point. The Orthometric height has a more 
physical meaning than the geometrical one of the 
ellipsoidal height [24]. The orthometric height was 
traditionally determined, by levelling techniques whereby 
height increases were obtained by intersecting the line of 
sight of a levelling instrument tangentially on the level 
surface, on two gradual levelling staff. Knowing the 
orthometric height is necessary for accurate engineering 
operations such as dams, pipes, tunnels, which operate 
with fluids and their flow. During the last century it was 
admitted that the average surface of the ocean was a good 
approximation of the level surface of the gravity field of 
the Earth and this surface was chosen as the references 
surface for heights. These geoid became a concept very 
used in practical determination of the Orthometric heights 
and widely such as heights above the average sea level or 
heights above the geoid are considered equivalent in the 
contest of most measuring applications [25]. 

It seems that not only the traditional geodesic 
measuring and photogrammetry methods are decisively 
influenced by GPS possibilities but also physical geodesy 
within the determination of orthometric heights, which is 
closely connected as it is known to the definition of the 
geoid as a reference surface. An understanding of heights 
is essential to the study of any field of Geomatic 
orthometric height [26]. Geometrically, is the length of a 
(curved) plumbline interesting the geoid (an equipotential 
surface) having the same potential as mean sea level at a 
right angle, and the corresponding point on the surface of 
the earth [23]. The heights mathematically orthometric 
height of a point is defined as its geopotential number 
divided by the mean gravity along the plumbline between 
that point and the geoid [26]. The geopotential number, 
defined as the difference between the potential on the 
geoid and the potential at a surface point. It is determined 
from the observed gravity and height differences between 
that point and mean sea level, realized the surface of the 
Earth [26]. 

Traditionally height data is obtained from levelling 
campaigns which results in reduced levels of points. 
However, the process of levelling is quite laborious, time 
consuming and expensive usually requiring field 
observations followed by rigorous post field computations. 
A minimal cost solution for obtaining orthometric heights 
is by forecasting using mathematical models. The process 

of estimating orthometric heights can be problematic due 
to discrepancies in the estimated values and there is 
therefore, the necessity of some mathematical modelling 
to remove discrepancies in the estimated results. 

Though there has been extensive work on the 
application of different techniques in estimating the 
orthometric of a point [27]. Notable among them are 
splines and radial basis functions [28], kriging [29], 
natural neighbour [30,31,32,33,34], rational function 
models [35], Grobner or Buchberger’s algorithm [36] and 
many more interpolation methodologies [37,38,39,40,41]. 
Little if any, research has been done on applying plausible 
alternative technologies such as Polynomial mathematical 
model, Multivariate Adaptive Regression Splines (MARS), 
Artificial Neural Networks (ANN) and Multiple Linear 
Regression (MLR). 

[42] used two different polynomial mathematical 
models, a third degree polynomial regression model and 
the Thompson’s Multiple Variable Polynomial regression 
models to model the relationship between extracted 
heights and ground reduced levels. Results from the two 
models indicates that, the latter presents better refinements 
to converting extracted heights into reduced levels with a 
coefficient of determination value of 95.5 %, although 
further research is recommend to investigate numerical 
techniques that could improve the solution to the 
Thompson’s polynomial [43]. Many researchers such as 
[25,44,45,46,47,48] have adopted the polynomial 
mathematical model to solve some heights problems in 
mathematical and satellite geodesy. 

In the recent decades, artificial neural network (ANN) 
has been widely adopted and applied to different area of 
mathematical geodesy. Its suitability as an alternative 
technique to the classical methods of solving most 
geodetic problems has been duly investigated [49]. Some 
of the problems solved in mathematical geodesy include 
GPS height conversion [50,51,52,53,54], geodetic deformation 
modelling [55-61], earth orientation parameter determination 
[62,63,64], precise orbital prediction [65,66], gravity anomaly 
estimation [67,68,69], geoid determination [70-75], and 
geodetic coordinate transformation [49,60,76-85]. ANN 
are been criticized for its long training process in 
achieving the optimal network’s topology, and it is not 
easy to identify the relative importance of potential input 
variables, and certain interpretive difficulties [87]. 

Multivariate Adaptive Regression Splines (MARS) is 
an adaptive modelling process invented by [88] used for 
non-linear relationships. In addition, MARS divides the 
predictor variables into piece-wise linear segments to 
describe non-linear relationships between the predictor 
and the dependent variable [87,89]. There are limited 
availability of literature of MARS in estimating 
orthometric heights but many studies have successfully 
applied MARS for solving different problems in 
engineering. Some of the areas of applications include 
estimating energy demand [90], slope stability analysis 
[87,91,92,93], landslide susceptibility mapping [94], water 
pollution prediction [95], earthquake modelling [96], 
studying ecological variables [97], region spatio-temporal 
mapping [98], modelling of the ionosphere [99], 
geothermal prospect [100] and so on. 

Multiple linear regression technique (MLR) was also 
applied in this study as an alternative mathematical 

 



 Journal of Geosciences and Geomatics 98 

procedure to estimate a local orthometric height. Several 
studies have been carried out using MLR and simple 
linear regression (SLR) procedures in coordinate 
transformation from global to local datum and vice versa 
[85,101,102,103,104]. It is well acknowledged that, the 
regression techniques achievable are applicable to 
surveying and mapping related works [85]. 

The existing knowledge and publications have not fully 
addressed the issue of applying alternative techniques in 
estimating orthometric heights. In addition, upon careful 
review of existing studies, the authors realized that the 
utilization of the Polynomial model, ANN, MARS and 
MLR techniques have not been applied as a practical 
alternative technology to the existing approaches. This 
present study for the first time explored the utilization of 
the polynomial model, ANN, MARS and MLR in 
estimating orthometric heights. To achieve the aim of this 
present study, the polynomial model, ANN, MARS and 
MLR methods were applied. 

This study also highlights the comparison between 
Polynomial model, ANN, MARS and MLR based on the 
results of statistical performance indicators such as mean 
(M), mean square error (MSE), root mean square error 
(RMSE), mean bias error (MBE), mean absolute error 
(MAE), standard deviation (SD), noise to signal ratio 
(NSR), correlation of coefficient (R), and correlation of 
determination (R2). The finding of these statistical 
indicators models will reveal the working efficiency of the 
models for orthometric heights estimation. Hence this 
study will serve as an added contribution to existing 
knowledge of polynomial model, ANN, MARS and MLR 
in mathematical geodesy. 

In this context, this paper evaluates, compares, and 
discusses the different methods of estimating the local 

orthometric height for a local geodetic network. In order 
to ascertain the efficiency of the methods, the Eastings, 
Northings and the orthometric heights were applied in the 
polynomial model, ANN, MARS and MLR models. This 
study will therefore create the opportunity for geospatial 
practitioners in Ghana to arrive at a consensus on the most 
appropriate technique applicable for estimating orthometric 
heights within the local geodetic datum. 

2. Study Area and Data Source 

The study was carried out in a large scale gold mine, 
denoted in this study as Mine X. Mine X is situated in the 
Western part of Ghana (Figure 1), almost 100 km  
South-West of Kumasi, Ghana’s second largest city [105]. 
The township of the study area lies 15 km North-
Northeast of the project area [106]. It covers a land area of 
873 km2 and which characterizes 8.6 % of the total land 
area of the Western Region of Ghana [105]. The land 
mass is dominated by steep terrain and dense vegetation 
interspersed with small agricultural plots of palm trees, 
cassava, and cocoa. The climate is mainly tropical with 
the highest mean temperature of 34 °C which is recorded 
between March and April whilst the lowest mean 
temperature of 30 °C is experienced in August [107]. 
Mine X lies with the Proterozoic terrain of Southwest 
Ghana and comprise rocks of Birimian age, with the belt 
dominated by Mafic volcanic and the basin typical by fine 
grained, deep water sediment and intruded by granites 
[106]. The topography of the land is about 350 m to 660 m 
above mean sea level and it lies beneath the Birimian and 
Tarkwaian rocks which is rich in minerals such as Bauxite, 
Manganese, and Gold deposits [108]. 

 
Figure 1. The Study Area 
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Table 1. Sample of the dataset 
ID Y (m) X (m) Z (m) 

1 116255.701 385420.847 31.787 

2 116280.604 385425.436 32.064 

3 116283.554 385402.716 32.329 

4 116305.495 38403.054 32.642 

5 116305.138 385425.242 32.314 

6 116306.489 385453.829 32.093 

7 116282.872 385450.118 31.625 

8 116258.058 385446.191 31.538 

9 116258.906 385466.920 31.273 

10 116260.631 385486.351 31.007 

 
Dataset and creation of a spatial database of descriptive 

variables are significant parts of any study [109]. 
Topographical data from Mine X were obtained from the 
Mine to embark this present study. The data consists of 
Easting, Northing, and Elevation of the observed prisms 
position. The data consists of 2280 field points obtained 
during a mini project in Mine X. Table 1 shows a sample 
of the dataset used to embark this present study. 

3. Methods 

3.1. Polynomial Mathematical Model 
Polynomial mathematical models are used to represent 

the terrain surfaces in the global, regional, local and 
patchwise methods of interpolations [110]. The basic 
general polynomial equation for surface representation is 
shown by Equation 1 below, where iZ  is the height of an 
individual point i , ix  and iy  are the rectangular 
coordinates of the point i  and 0a , 1a , 2a …. 15a  are the 
coefficients of the polynomial. One such equation will be 
generated for each individual point i  with coordinates ix , 

iy  in estimating the iZ  using the linear bi-saddle 
polynomial mathematical model given by Equation 1 as: 

 0 1 2 3 .i i i i iZ a a x a y a x y= + + +  (1) 

The coefficients were determined using the ordinary 
least square and total least square techniques. 

3.2. Ordinary Least Square (OLS) and Total 
Least Square (TLS) 

Least Square method is a statistical technique that is 
capable of determining the line of best fit of a model and 
seeks to find the minimum sum of the squares of residuals. 
This method is extensively used in regression analysis and 
estimation [111]. Considering a system of equations in the 
form as denoted by Equation 2 to be solved by least 
squares: 

 BX L≈  (2) 

Where , ,m n n d m dB R X R L R× × ×∈ ∈ ∈ , and m n≥ . Where 
m is the number of rows and n is the number of columns 
[112,113]. 

The solution of the unknown parameters matrix X by 
OLS approach can be achieved as denoted by Equation 3: 

 
1

.T TX B B B L
−

   =      (3) 

The corresponding error vector V can be achieved by 
using Equation 4 as denoted by: 

 .V BX L= −  (4) 
On the other hand, solution of unknowns’ parameters 

X


by TLS approach is obtained as denoted by Equation 5: 

 [ ] ( )L BL V B V Xrank B m n+ = + = <


 (5) 

Where VL is the error vector of observations and VB is the 
error matrix of the data matrix, the assumption that both 
have independently and identically distributed rows with 
zero mean and equal variance [114]. 

[115], invented TLS to rectify the inefficiency 
associated with the OLS. Thus, accounting for 
perturbations in data matrix and observation matrix [116]. 
TLS is a mathematical algorithm that yields a unique 
solution in analytical form in terms of the Singular Value 
Decomposition (SVD) of the data matrix [117]. According 
to [115] and [118], the TLS algorithm is an iterative 
process which looks to minimize the errors in Equation 6 
as denoted by: 

 [ ] ( 1)ˆ ˆ ˆ ˆmin , , , , .n m
F

B L B L B L R +   − ∈     (6) 

The optimization process goes on until a minimizing 
ˆ ˆ,B L    is obtained, any X



that satisfies ˆ ˆ ˆBX L=  is the 

TLS solution [112]. In order to obtain the solution of 
ˆBX L= , we write the functional relation as denoted by 

Equation 7: 

 [ ], , 1 0.
TTB L X − ≈   (7) 

The TLS problem can be solved using the Singular 
Value Decomposition (SVD) [117,119]. The SVD of the 
augmented matrix [ ],B L  is required to determine whether 

or not it is rank deficient. Matrix [ ],B L  can be 
represented by SVD as denoted by Equation 8 as: 

 [ ], TB L USV=  (8) 

Where U = real valued m x n orthonormal matrix, UUT = 
Im, V = real value n x n orthonormal matrix, VVT = In, S 
= m x n matrix with diagonals being singular values, off-
diagonals are zeros. The rank of matrix [ ],B L  is m + 1, 
and must be reduced to m using the Eckart-Young Mirsky 
theorem [116]. The TLS solution after the rank reduction 
is given by Equation 9 denoted as: 

 1
1, 1

1ˆ , 1 .T
m

m m
X V

V +
+ +

 − =   (9) 

If 1, 1 0m mV + + ≠ , then 

 1, 1 1, 1 , 11/ ( ). , ,
T

m m m m mBX L V B V V+ + + + = = −    
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belongs to the column space of B̂ , hence X solves the 
basic TLS problem [120]. The corresponding TLS 
correction is achieved by using Equation 10 as denoted by: 

 [ ]ˆ ˆ ˆ ˆ, , .B L B L B L   ∆ ∆ = − −     (10) 

3.3. Artificial Neural Network (ANN) 

3.3.1. Normalization 
In training dataset with ANN model, the dataset must 

be normalized. The original data to be used for the ANN 
training and its model formulation are expressed in 
different units with different physical meanings. Therefore, 
to ensure constant variation in the ANN model, datasets 
are frequently normalized to a certain interval such as  
[-1, 1], [0, 1] or other scaled criteria. This data normalization 
improves convergence speed and doing so reduces the 
chances of getting stuck in local minima. In this study, the 
selected input and output variables were normalized into 
the interval [−1, 1] according to Equation 11 denoted as 
[121]: 

 ( ) ( )
( )

max min min
min

max min

i
i

y y x x
y y

x x
− × −

= +
−

 (11) 

Where iy  represents the normalized data, ix  is the 
measured coordinate value, while minx  and maxx  
represent the minimum and maximum values of the 
measured coordinates with maxy  and miny  values set at 1 
and -1, respectively. 

3.3.2. ANN Architecture 
In this study, the adopted supervised ANNs architecture 

namely BPNN was utilized due to its frequent application. 
The networks have a feed forward topology consisting of 
input, hidden and output layers that are fully 
interconnected. 

3.3.3. Backpropagation Neural Network (BPNN) 
The backpropagation neural network (BPNN) has 

gained much popularity over the last decade and has many 
application areas in geodesy [60,78,79,82,83,84]. The 
BPNN encompasses an input layer, one or more hidden 
layers and an output layer of processing neurons with each 
layer feeding input to the next layer in a feedforward 
fashion through a set of connection weights [122]. The 
input layer is an opening that is responsible for receiving 
the input data, whereas the output layer gives the final 
results of the computation. In between these two layers is 
the hidden layer chamber where the input data are fed to 
the neurons in the hidden layer for processing. It is 
important to state that the connections between all the 
layers of the network are realized through synaptic 
weights, which are in turn used by the network to solve a 
specific problem. It is also well acknowledged that the 
number of hidden neurons, hidden layers and type of 
activation functions used in the BPNN determines its 
competency. Typically, the number of hidden neurons is 
obtained through the sequential trial and-error approach. 
This is partly due to the type of problem at hand, the 

choice of neural network architecture and the proposed 
theoretical concepts that are yet to be universally accepted 
to clarify the number of hidden neurons needed to 
approximate a given function. In this study, the optimum 
number of hidden neurons was obtained based on the 
lowest mean squared error (MSE). The MSE is 
represented by Equation (12) as: 

 ( ) 2

1

1 n

i i
i

MSE
n

α β
=

= −∑  (12) 

Where iα and β  are the measured and predicted plane 
displacements from the BPNN model. The present study 
applied one hidden layer in the BPNN. This decision was 
in line with the conclusion made in [123], that the BPNN 
with one hidden layer could be used as a universal 
approximate for any discrete and continuous functions. 
Furthermore, to introduce non-linearity into the network, 
the hyperbolic tangent activation function was selected for 
the hidden units, while a linear function was applied for 
the output units. The hyperbolic tangent function [124] is 
defined in Equation (13) denoted as: 

 2
2( ) tanh( ) 1

1 xf x x
e−

= = −
+

 (13) 

Where x  is the sum of the weighted inputs. It worth 
stating that the BPNN training can be considered as a non-
linear optimization problem, *w (Konaté et al., 2015), 
given by Equation (14) denoted as: 

 * arg min ( )w E w=  (14) 

Where w  is the weight matrix and ( )E w  is the error 
function. The purpose of training the network is to find the 

optimal weight connection ( )w∗  that minimizes ( )E w  

such that the estimated outputs from the BPNN will be in 
good agreement with the target data. This ( )E w  is 
evaluated at any point of w  shown in Equation (15) as 
denoted by: 

 ( ) ( )n
n

E w E w= ∑  (15) 

Where n  is the number of training samples and ( )nE w  is 

the output error for each sample n . ( )nE w  [125,126] is 
mathematically defined by Equation (16) denoted as: 

 ( )( )21( )
2n nj nj

j
E w d y w= −∑  (16) 

Where njd  and ( )njy w  are anticipated network outputs 

and estimated values of the jth  output neuron for the nth 
sample, respectively. Therefore, substituting Equation (14) 
into Equation (17) gives the objective function to be 
minimized expressed in Equation (17) as given as: 

 ( ) ( )( )21 .
2 nj nj

n j
E w d y w= −∑∑   (17) 
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3.4. Multivariate Adaptive Regression Splines 
(MARS 

The MARS model uses a nonparametric modelling 
approach that does not require assumptions about the form 
of the relationship between the independent and dependent 
variables [88,109]. The MARS model works by dividing 
the ranges of the explanatory variables into regions and by 
producing for each of these regions a linear regression 
equation [109]. The breaks values between each region are 
called knots, whiles the term basis functions (BFs) are 
used to demonstrate each distinct interval of the predictors 
[96,109]. BFs are functions of the following form as 
denoted by Equation 18: 

 max(0, ) max(0, )x k or k x− −  (18) 

Where x is an independent variable and k is a constant 
corresponding to a knot [109]. The general formula for the 
MARS model is given by Equation 19 as denoted by [87]: 

 0
1

( ) ( )
N

n n
n

y f x a xα β
=

= = +∑  (19) 

Where, y  is the dependent variable predicted by the 
function ( )f x , 0a  is a constant, and N  is the number of 
terms, each of them formed by a coefficient nα  and 

( )n xβ  is an individual basis functions or a product of two 
or more BFs. The MARS model was developed in two 
steps. In the first step, the forward algorithm, basis 
functions are presented to define Equation 19. Many basis 
functions are added in Equation 19 in order to get a better 
result [96,109]. The developed MARS may experience 
over fitting due to the large number of basis functions. In 
order to mitigate this problem, the second step that is the 
backward algorithm prevents over fitting by removing 
redundant basis functions from Equation 19. The MARS 
model adopts Generalized Cross-Validation (GCV) to 
delete the redundant basis functions (Samui and Kothari, 
2012). The expression of GCV is written as (Craven and 
Wahba, 1979): 

 
( )

2

1
2

1 ( )

1

N

i i
i

y f x
N

GCV
C H

N

=

 − 
=

 
− 

 

∑ 

 (20) 

Where N  is the number of data and ( )C H  is a 
complexity penalty that increases with the number of basis 
function (BFs) in the model and which is defined as 
denoted by Equation 21: 

 ( ) ( 1)C H h dH= + +  (21) 

Where d  is a penalty for each BFs included into the 
model and H  is the number of basis functions in 
Equation 10 [88,127]. 

3.6. Multiple Linear Regression (MLR) 
The multiple linear regression (MLR) is an extensively 

used techniques in geoscientific studies for articulating the 

dependence of a response variable on several explanatory 
variables [85]. It fits a linear combination of the 
components of multiple input parameters to a single 
output parameter defined by Equation (22) as: 

 0
1

M

i i
i

y xα β
=

= +∑  (22) 

Where 0α  is the intercept (values when all the 

independent variables are zero) with iβ values denoting 
the regression coefficients which were obtained in this 
present study using the least square technique. In Equation 
(22), i is an integer varying from 1 to M, where M is the 
total number of observations. Since there are several 
variables that can be used as candidates for predictor 
variables in the MLR models formulation, it would be 
demanding having to try every possible combination of 
variables [85]. 

3.7. Model Performance Assessment 
In order to compare the models results with the 

estimated heights, the residuals calculated between the 
desired outputs and the outputs produced by the various 
techniques were utilized. Hence, to make an objective 
assessment of the models, performance criteria indices 
(PCI) of mean error (ME), mean square error (MSE), root 
mean square error (RMSE), mean bias error (MBE), 
standard deviation (SD), noise to signal ratio (NSR), 
correlation coefficient (R), correlation of determination 
(R2) were adopted. Their mathematical representation is 
given by Equation (23) to Equation (33) as follows: 

 ( )
1

1 n

i i
i

ME
n

α β
=

= −∑  (23) 

 2
1

1

1 ( )
n

i
i

MSE
n

α β
=

= −∑  (24) 

 
2ERMSE

n
= ∑  (25) 

 EMBE
n

= ∑  (26) 

 E
MAE

n
= ∑  (27) 

 ( )2
1

1
1

n

i
SD e e

n =
= −

− ∑  (28) 

 Average of theresidualsSNR
SD of theresiduals

=  (29) 

With reference to Equations (23) to (27), n is the total 
number of points, iα and iβ  are the measured variable 
and estimated variable produced by the models. α
represent the residuals between the measured and 
estimated variables and α is the mean value of the 
residuals.  in Equation (27) represents the absolute 
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value of the residuals estimated between iα  and iβ . E is 
the average of the residuals. The correlation coefficient (R) 
is given by Equation (30) as: 

 
( )( )

( ) ( )

1
2

2

1 1
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Where N  is the total number of test examples presented 
to the learning algorithms, α and β  are the measured and 
predicted plane coordinates from the various procedures, 
while α and β  are the mean of the predicted ionospheric 
delay corrections. e  in Equation (28) denotes the residual 
between the measured and predicted ionospheric delay 
corrections, and e  is the average of the residual. The R2 
was computed by Equation (31) as: 
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Where R2 is the correction of determination and the other 
variables are the same as in defined in Equation 30. N  is 
the total number of test examples presented to the learning 
algorithms, α and β  are the measured and predicted 
plane coordinates from the various procedures, while α
and β  are the mean of the predicted ionospheric delay 
corrections. 

4. Results and Discussions 

The undetermined parameters of simple planar surface 
polynomial model were achieved by utilizing the OLS and 
TLS models. The unknown parameters with their 
individual standard deviation are tabulated in Table 2 
below. Sample of the results achieved by the OLS and 
TLS using the polynomial is tabulated in Table 3. Figure 2 
represent the 3D surface map and contour generated from 
the observed data. Figure 3 is the results of the 3D surface 
map and contour map generated from the OLS model 
using the polynomial approach, and Figure 4 is the results 
of the 3D surface map and contour map obtained from the 
TLS model using the polynomial approach. The 
performance criteria indices of the OLS and TLS models 
using the polynomial technique are tabulated in Table 3 
below. 

Table 2. Parameters obtained by the OLS and TLS models (Units in metres) 

OLS TLS 
VALUE PARAMETER SD VALUE PARAMETER SD 

a0 845.1159 34.3072000 a0 1.0354E04 1.1232E-05 
a1 -0.00270 7.6967E-05 a1 -0.0239000 2.5198E-11 
a2 0.002000 5.0263E-05 a2 -0.0096000 1.6456E-11 

Table 3. Sample results by the OLS and TLS models (Units in metres) 

OLS TLS 
ACTUAL PREDICTED RESIDUAL ACTUAL PREDICTED RESIDUAL 

31.787 36.9910151 -5.20402 31.787 26.3870271 5.399973 
32.064 37.0284308 -4.96443 32.064 26.0382812 6.025719 
32.329 37.095678 -4.76667 32.329 26.5529692 5.776031 
32.642 37.1386442 -4.49664 32.642 26.3342574 6.307743 
32.314 37.0780886 -4.76402 32.314 25.8073914 6.506609 
32.093 37.0035397 -4.91054 32.093 25.1111925 6.981808 
31.625 36.9663254 -5.34133 31.625 25.4266086 6.198391 
31.538 36.9273003 -5.3893 31.538 25.7586783 5.779322 
31.273 36.873028 -5.60003 31.273 25.2551144 6.017886 
31.007 36.8240143 -5.81701 31.007 24.7741535 6.232847 

 
Figure 2. 3D and Contour map of the observed data 
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Figure 3. 3D and Contour map results by the OLS model 

 
Figure 4. 3D and Contour map results by the TLS model 

Table 4. Statistical analysis of the OLS and TLS models (Units in metres) 

PCI M MSE RMSE MAE MBE SD NSR 
OLS -0.13571 38.20282 6.180843 0.368388 0.368388 38.1844 0.00355 
TLS 0.683455 68.3294 21.64092 0.826714 0.826714 0.009206 74.23796 

Table 5. Sample results by the MARS and MLR models (Units in metres) 

MARS MLR 
ACTUAL PREDICTED RESIDUAL ACTUAL PREDICTED RESIDUAL 

31.787 31.9548 -0.1678 31.787 38.0300413 -6.24304 
32.064 31.8838 0.1802 32.064 38.1132174 -6.04922 
32.329 32.1478 0.1812 32.329 38.1230704 -5.79407 
32.642 32.1286 0.5134 32.642 38.1963533 -5.55435 
32.314 31.8691 0.4449 32.314 38.1951609 -5.88116 
32.093 31.5334 0.5596 32.093 38.1996733 -6.10667 
31.625 31.5932 0.0318 31.625 38.1207925 -6.49579 
31.538 31.6564 -0.1184 31.538 38.0379137 -6.49991 
31.273 31.4131 -0.1401 31.273 38.040746 -6.76775 
31.007 31.1844 -0.1774 31.007 38.0465075 -7.03951 

 
From Table 2 above, it was observed that both OLS and 

TLS using the polynomial approach produce satisfactory 
results of the orthometric heights in the mine but with less 
accuracies. From Figure 2, Figure 3, and Figure 4, it can 
be observed that both models are not fitting the actual 
terrain in the mine. This means that, in this present study, 
both the OLS and TLS using the simple planar surface is 
inefficient in estimating orthometric heights in the mine. 

This can be attribute to the inability of both models to 
denoise the dataset to give a better estimate of the 
orthometric heights. In this present study, the OLS 
approach as compare to the TLS achieve higher results in 
terms of accuracy in estimating the orthometric heights 
using the polynomial model approach. 

Sample of results achieved by the MARS and MLR 
models are tabulated in Table 5. 25 basis functions have 
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been used to construct the MARS model. 3D and contours 
maps generated by the MARS and MLR models results is 
represented by Figure 5 and Figure 6 below. Their 
performance criteria indices is tabulated in Table 6 below. 
Ultimately, 14 basis functions have been used for the 
optimum MARS model. The final equation for prediction 
of the orthometric height in the mine using the MARS 
model is given by Equation 32: 

 
14

1
( ) 8.050763 i i

n
y i α β

=
= − +∑  (32) 

The optimal equation developed by the MLR model for 
estimating orthometric heights in the mine is denoted by 
Equation 33 as given by: 

 ( ) 350.264 (0.00334* ( ))y i Y i= − +  (33) 

 
Figure 5. 3D and Contour map by the MARS model 

 
Figure 6. 3D and Contour map by the MLR model 

Table 6. Statistical analysis of the MARS and MLR model (Units in metres) 

PCI M MSE RMSE MBE MAE SD NSR 

MARS -1.89E-6 2.246374 1.498791 0.001374 0.001374 2.24736 8.40E-7 

MLR -0.36657 45.1855 6.722016 0.60545 0.60545 0.60545 47.9877 

 
The statistical findings reveals that the MARS models 

produce satisfactory results with higher accuracy in 
estimating orthometric heights in the mine. MARS 
compare to the MLR and polynomial model can be used 
as a plausible alternative technique in estimating 
orthometric heights in the mine. 

Table 7. ANN optimal results 

PCI MSE R 

TRAINING 9.28E-02 9.99E-01 
VALIDATION 1.07E-01 9.99E-01 

TESTING 9.38E-02 9.9E-01 

Table 8. Sample results by the ANN model (Units in metres) 

ACTUAL PREDICTED RESIDUAL 
17.169 16.9433723 0.225628 
28.381 28.8483558 -0.46736 
18.486 18.6306682 -0.14467 
18.354 18.3718239 -0.01782 
20.677 20.3382698 0.33873 
20.387 20.3777289 0.009271 
20.696 20.6816927 0.014307 
22.454 22.3169044 0.137096 
22.52 22.3092293 0.137096 
23.123 22.5970152 0.525985 

 



105 Journal of Geosciences and Geomatics  

Table 9. Statistical analysis of the ANN model (Units in metres) 

PCI M MSE RMSE MAE MBE SD NSR 

ANN 0.005835 0.095055 0.30831 0.076385 0.076385 0.095063 0.061378 

 
Figure 7. 3D and Contour map by the ANN model 

 
Figure 8. Correlation results 

The optimal ANN model achieved in this present study 
was 2-18-1, thus 2 inputs, 18 hidden neurons and 1 output. 
The model was trained with 25 hidden neurons. The 18 
hidden neuron was the optimal ANN structure that 
achieved a lesser MSE and higher R value. The results for 
the optimal ANN structure is tabulated in Table below. 
Sample of the results obtained by the ANN model is 
tabulated in Table 8 with their performance criteria indices 
and 3D and contour map represented by Table 9 and 
Figure 7. According to their statistical finings, the ANN as 
compare to the MARS model produce satisfactory results 
in the estimating of orthometric heights in the mine with 
good results in terms of accuracy. 

The correlation coefficient and correlation of 
determination results which shows the relationship 
between the input values (independent variables) and 
output (dependent variables) is represent by Figure 8. It 
can be observed there is a higher correlation relationship 
between the ANN and MARS models in estimating the 

orthometric heights in the mine. 

5. Concluding Remarks 

In this present study, we proposed various methods for 
estimating orthometric heights in a mine based on the 
utilization of the polynomial, ANN, MARS and MLR 
models. Through the analysis of the statistical findings of 
each model, the results shows that, the proposed ANN and 
MARS model is feasible for estimating orthometric 
heights in the mine. In addition, we draw conclusions 
from the results achieved in this present study that, the 
MARS and ANN models can be used as a plausible 
alternative techniques in estimating orthometric heights 
for an area of interest. This study will create the opportunity 
for geospatial practitioners to know the efficiency of 
polynomial, ANN, MARS and MLR in solving some of 
the problems in geoscientific communities. 

 



 Journal of Geosciences and Geomatics 106 

Acknowledgements 

The authors wish to acknowledge the assistance given 
by many reviewers and individuals. They have supplied a 
great deal of relevant and interesting material, much of 
which has had to be condensed considerably to fit within 
the scope of this paper. Nevertheless, sincere thanks are 
due to all of those whose have contributed information 
used in this paper. 

References 
[1] Heiskanen, W. A., and Moritz, H., “Physical Geodesy”, San 

Francisco, WH Freeman, 1967. 
[2] Vanicek, P., and Krakiwsky, E., “Geodesy the Concepts”, 2nd edn., 

Elsevier, Amsterdam, 1986. 
[3] Tenzer, R., and Vanicek, P., and Santos, M., “Mean gravity along 

the plumbline”, In: Paper presented to the CGU and AGU annual 
scientific meeting, Montreal, 2004. 

[4] Strang van Hees, G. L., “Practical formulas for the computation of 
the Orthometric and dynamic correction”, Zeitschrift fur 
Vermessungswesen, 1992, 117. 

[5] Drewes, H., Dodson, A. H., Fortes, L. P., Sanchez, L., and 
Sandoval, P., “Vertical referencing systems”, IAG Symposia 24, 
Springer, Berlin Heidelberg New York, 2002, 353. 

[6] Lilje, M., “Geodesy and Surveying in the future – the importance 
of heights”, LMV Rep. 1999.3, National Land Survey, Gavle, 
Sweden, 1999, 418. 

[7] Helmert, F. R., “Die Schwerkraft im Hochgebirge, insbesondere in 
den Tyroler Alpen”, Veroff. Konigl. Preuss. Geod. Inst., 1890, 1. 

[8] Niethammer, T., “Nivellement und Schwere als Mittel zur 
Berechnung wahrer Meereshohen”, Schweizerische Geodatische 
Kommission, 1932. 

[9] Mader, K., “Die orthometrische Schwerekorrektion des 
Prazisions-Nivellements in den Hohen Tauern”, Osterreichische 
Zeitschrift fur Vermessungswesen, Sonderheft 15, 1954. 

[10] Vanicek, P., Huang, J., Novak, P., Pagiatakis, S. D., Veronneau, 
M., Martinec, Z., and Featherstone, W. E., “Determination of the 
boundary values for the Stokes-Helmert problem”, J. Geod, 73, 
180-192, 1999. 

[11] Allister, N. A., and Featherstone, W. E., “Estimation of Helmert 
Orthometric heights using digital barcode levelling, observed 
gravity and topographic mass-density data over part of Darling 
Scarp, Western Australia”, Geom Res Aust, 75, 25-52, 2001. 

[12] Hwang, C., and Hsiao, Y. S., “Orthometric height corrections 
from levelling, gravity, density and elevation data: A Case Study 
in Taiwan”, J. Geod, 77(5-6), 292-302, 2003. 

[13] Ledersteger, K., “Der Schwereverlauf in den Lotlinien und die 
Berechnung der wahren Geoidschwere”, Publication dedicated to 
W. A. Heiskanen, Publ. Finn. Geod Inst., 46, 109-124, 1955. 

[14] Rapp, R. H., “The Orthometric height”, MS Thesis, Department of 
Geodesi Science, Ohio State University, Columbus, 1961. 

[15] Krakiwsky, E. J., “Heights”, MS Thesis, Department of Geodesic 
Science and Survey, Ohio State University Columbus, 1965, 157. 

[16] Strange, W. E., “An evaluation of Orthometric height accuracy 
using borehole gravimetry”, Bull Geod, 8, 300-311, 1982. 

[17] Sunkel, H. , “Digital height and density model and its use for the 
Orthometric height and gravity field determination for Australia”, 
In: Proceedings of International Symposium on the definition of 
the geoid, Florence, 1986, 599-604. 

[18] Kao, S. P., Rongshin, H., and Ning, F. S., “Results of field test for 
computing Orthometric correction based on measured gravity”, 
Geom Res Aus, 72, 43-60, 2000. 

[19] Tenzer, R., and Vanicek, P., “Correction to Helmert’s Orthometric 
height due to actual lateral variation of topographical density”, 
Brazilian J. Cartography-Revista Brasileira de Cartografia, 55(2), 
44-47, 2003. 

[20] Tenzer, R., Vanicek, P., Santos, M., Featherstone, W. E., and 
Kuhn, M., “The rigorous determination of Orthometric heights”, J. 
Geod, 1-11, 2005. 

[21] Dennis, M. L., and Featherstone, W. E., “Evaluation of 
Orthometric and related height systems using a simulated 

mountain gravity field”, In: Tziavos IN (ed) Gravity and geoid 
2002, Department of Survey and Geodesy, Aristole Univ 
Thessaloniki, 2003, 389-394. 

[22] Octavian Roma, R., “Ways of Determining the Orthometric 
Heights Using GPS Technology, FIG Working Week 2004, Athens, 
Greece, May 22-27, 2004, 1-10. 

[23] Torge, W., “Physical Geodesy”, 3rd Edition, Walter de Gruyter, 
Berlin, New York, 2001, 416. 

[24] Featherstone, W and Vanicek, P., “The Role of Coordinate 
Systems, Coordinates and Heights in Horizontal Datum 
Transformations”, Western Australian Divisions of Institution of 
Surveyors and Mapping Sciences, Institute and University of New 
South Wales, 1998. 

[25] Peprah, S. M., Yevenyo, Y. Y., and Issaka, I., “Performance 
Evaluation of the Earth Gravitational Model (EGM2008) – A Case 
Study”, South African Journal of Geomatics, 6(1), (in press), 2017. 

[26] Kingdon, R., Vanicek, P., Santos, M., Ellmann, A., and Tenzer, R., 
“Toward an Improved Orthometric Height System for Canada”, 
Geomatica, 59(3), 241-249, 2005. 

[27] Erdogan, S., “A Comparison of interpolation methods for 
producing digital elevation models at the field scale”, In Earth 
Surface Processes and Landforms, 34, 366-376, 2009. 

[28] Godone, D., and Garnero, G., “The role of morphometric 
parameters in Digital Terrain Models interpolation accuracy”, 
European Journal of Remote Sensing, 46, 198-214, 2013. 

[29] Englund, E., and Sparks, A., “Geo-EAS (Geostatistical 
Environment Assessment Software)”, Las Vegas, NY, U.S, 
Environmental Protection Agency, 1988, EPA/600/4.88/033a. 

[30] Bater, C. W., and Coops, N. C., “Evaluating error associated with 
lidar-derived DEM interpolation”, Computers & Geosciences, 35, 
289-300, 2009. 

[31] Gold, C. M., “Surface Interpolation, Spatial adjacency and GIS”, 
(J. Raper, Ed), Taylor & Francis, 1989. 

[32] Sambridge, M., Braun, J., and McQueen, H., “Geophysical 
parameterization and interpolation of irregular data using natural 
neighbours”, Geophysical Journal International, 122, 837-857, 1995. 

[33] Watson, D. F., and Philip, G., “Neighbourhood-Based 
Interpolation”, Geobyte, 2(2), 12-16, 1987. 

[34] Sibson, R., “A brief description of natural neigbour interpolation”, 
In V Barnett, editor, Interpreting Multivariate Data, 21-36, Wiley, 
New York, USA, 1981. 

[35] Xianyong, L., and Xiuxiao, Y., “Improvement of the Stability 
Solving rational polynomial coefficients”, International Archives 
of the Photogrammetry, Remote Sensing and Spatial Information 
Science, 2008, XXXVII. 

[36] Martin, B., Klas, J., and Kalle, A., “Fast and Stable Polynomial 
Equation Solving and its application to computer vision”, 
International Journal of Computer Vision, 84(3), 237-256, 2009. 

[37] Childs, C., “Interpolation surfaces in ArcGIS Spatial analyst”, 
ESRI Education Services, 2004. 

[38] Tomlison, R., “Thinking about GIS”, In Geographic Information 
System Planning for Managers, 2007, 224. 

[39] Fisher, P. F., and Tate, N. J., “Causes and Consequences of error 
in digital elevation models”, Progress in Physical Geography, 
30(4), 467-489, 2006. 

[40] Collins, F. C., “A Comparison of Spatial Interpolation Techniques 
in Temperature Estimation”, Blacksburg, VA, Virginia 
Polytechnic Institute and State University, 1995. 

[41] Johnston, K., Ver Hoef, J. M., Krivoruchko, K., and Lucas, N., 
“ArcGIS9, using ArcGIS Geostatistical Analysis”, Environmental 
Research Institute, 2003. 

[42] Ayer, J., Agyemang, A. B., Yeboah, F., Osei Jnr, E. M., Abebrese, 
S., Suleman, I., “A Comparative Analysis of Extracted Heights 
from Topographic Maps and Measured Reduced Levels in Kumasi, 
Ghana”, South African Journal of Geomatics, 5(1), 313-324, 2016. 

[43] Thompson, E. H., “Corrections to X-Parallaxes”, The 
Photogrammetric Records, 6(32), 202-210, 1968. 

[44] Soycan, M., “Determination of Geoid Heights by GPS and Precise 
Trigonometric levelling, Survey Review, 38(299), 387-396, 2014. 

[45] Erol B., “An automated height transformation using precise geoid 
models”, Journal of Scientific Research and Essays, 6(6), 1351-
1363, 2011. 

[46] Dawod, G. M., Mohammed, H. F., Ismail, S.S., “Evaluation and 
adaptation of the EGM2008 geopotential model along the 
Northern Nile Valley, Egypt: Case Study”, Journal of Surveying, 
136, 36-40, 2010a. 

 



107 Journal of Geosciences and Geomatics  

[47] Dawod, G., “Towards the redefinition of the Egyptian geoid: 
performance analysis of recent global geoid models and digital 
terrain models”, Journal of Spatial Science, 53(1), 31-42, 2008. 

[48] Al-Krargy, E. M., Doma, M. I. and Dawod, G. M., “Towards an 
Accurate Definition of the Local Geoid Model in Egypt using 
GPS/levelling Data: A Case Study of Rosetta Zone”, International 
Journal of Innovative Science and Modern Engineering, 2(11), 1-6, 
2014. 

[49] Ziggah, Y. Y., Youjian, H., Tierra, A., Konate, A. A., and Hui, Z., 
“Performance Evaluation of Artificial Neural Networks for 
Planimetric Coordinate Transformation-A Case Study, Ghana”, 
Arab J Geosci, 9, 698-714, 2016a. 

[50] Fu, B., and Liu, X., “Application of artificial neural network  
in GPS height transformation”, Appl Mech Mater, 501(504),  
2162-2165, 2014. 

[51] Liu, S., and Li, J., and Wang, S., “A hybrid GPS height conversion 
approach considering of neural network and topographic 
correction”, International Conference on Computer Science and 
Network Technology, China, 2011. 

[52] Lei, W., and Qi, X., “The application of BP neural network in 
GPS elevation fitting”, International Conference on Intelligent 
Computation Technology and Automation, Changsha-China, 2010. 

[53] Tieding, L., Shijian, Z., and Xijiang, C., “A number of issues 
about converting GPS height by BP neural network”, International 
Conference on Biomedical Engineering and Computer Science 
(ICBECS), Wuhan-China, 2010. 

[54] Wu, L. C., Tang, X., and Zhang, S., “The application of genetic 
neural network in the GPS height transformation”, IEEE Fourth 
International Conference on Computational and Information 
Sciences, Chongqing-China, 2010. 

[55] Bao, H., Zhao, D., Fu, Z., Zhu, J., and Gao, Z. (2011), 
“Application of genetic algorithm improved BP neural network in 
automated deformation monitoring”, Seventh International 
Conference on Natural Computation, Shanghai-China, IEEE, 2011. 

[56] Du, S., Zhang, J., Deng, Z., and Li, J., “A new approach of 
geological disasters forecasting using meteorological factors based 
on genetic algorithm optimized BP neural network”, Elektronika 
IR Elektro Technika, 20(4), 57-62, 2014a. 

[57] Du, S., Zhang, J., Deng, Z., and Li, J. “A neural network based 
intelligent method for mine slope surface deformation prediction 
considering the meteorological factors”, TELKOMNIKA 
Indonesian J Elect Eng, 12(4), 2882-2889, 2014b. 

[58] Gao, C. Y., Cui, X. M., and Hong, X. Q., “Study on the 
applications of neural networks for processing deformation 
monitoring data”, Appl Mech and Mater, 501(504), 2149-2153, 
2014. 

[59] Pantazis, G., and Eleni-Georgia, A., “The use of artificial neural 
networks in predicting vertical displacements of structures”, Int J 
Appl Sci Technol, 3(5), 1-7, 2013. 

[60] Yilmaz, I., and Gullu, M, “Georeferencing of historical maps 
using backpropagation artificial neural network”, Exp Tech, 36, 
15-19, 2012. 

[61] Yilmaz, M., “Artificial neural networks pruning approach for 
geodetic velocity field determination”, Bol Cienc Geod, 19(4), 
558-573, 2013.  

[62] Liao, D. C., Wang, Q. J., Zhou, Y. H., Liao, X. H., and Huang, C. L., 
“Long-term prediction of the earth orientation parameters by the 
artificial neural network technique”, J Geodyn, 62, 87-92, 2012. 

[63] Schuh, H., Ulrich, M., Egger, D., Muller, J., and Schwegmann, W., 
“Prediction of earth orientation parameters by artificial neural 
networks”, J Geod, 76, 247-258, 2002. 

[64] Yu, L., Danning, Z., and Cai, H., “Prediction of length of day 
using extreme learning machine”, Geod Geodyn, 6(2), 151-159, 
2015. 

[65] He-Sheng, W., “Precise GPS orbit determination and prediction 
using H∞ neural network”, J Chinese Inst Eng, 29(2), 11-219, 2006. 

[66] Li, X., Zhou, J., and Guo, R., “High-precision orbit prediction and 
error control techniques for COMPASS navigation satellite”, 
Chinese Sci Bull, 59(23), 2841-2849, 2014. 

[67] Hajian, A., Ardestani, E. V., and Lucas, C., “Depth estimation of 
gravity anomalies using Hopfield neural networks”, J. Earth Sp 
Phys, 37(2), 1-9, 2011. 

[68] Hamid, R. S., and Mohammad, R. S., “Neural network and least 
squares method (ANN-LS) for depth estimation of subsurface 
cavities case studies: Gardaneh Rokh Tunnel, Iran”, J. Appl Sci 
Agric, 8(3), 164-171, 2013. 

[69] Tierra, A. R., and De Freitas, S. R. C., “Artificial neural network: 
a powerful tool for predicting gravity anomaly from sparse data, 
Gravity, geoid and space missions”, International Association of 
Geodesy Symposia, Springer, Berlin Heidelberg DA, 2005. 

[70] Kavzoglu, T., and Saka, M. H., “Modelling local GPS/Levelling 
geoid undulations using artificial neural networks”, J. Geodesy, 78, 
520-527, 2005. 

[71] Pikridas, C., Fotiou, A, Katsougiannopoulos, S., and 
Rossikopoulos, D., “Estimation and evaluation of GPS geoid 
heights using an artificial neural network model”, Appl Geomat, 3, 
183-187, 2011. 

[72] Stopar, B., Ambrozic T., Kuhar, M., and Turk, G., “GPS-derived 
geoid using artificial neural network and least squares collocation”, 
Surv Rev, 38(300), 513-524, 2006. 

[73] Sorkhabi, O. M., “Geoid determination based on log sigmoid 
function of artificial neural networks: (a case study: Iran), J Artif 
Intell Electr Eng, 3(12), 18-24, 2015. 

[74] Veronez, M. R., Thum, B. A., and De Souza, G. C., “A new 
method for obtaining geoidal undulations through artificial neural 
networks”, 7th International Symposium on Spatial Accuracy 
Assessment in Natural Resources and Environmental Sciences, 
2006, 306-316. 

[75] Veronez, M. R., De Souza, G. C., Matsuoka, T. M., Reinhart, A., 
and Da Silva, R. M. (2011), “Regional mapping of the geoid using 
GNSS (GPS) measurements and n artificial neural network”, 
Remote Sens, 3, 668-613, 2011. 

[76] Gullu, M., “Coordinate transformation by radial basis function 
neural network”, Sci Res Essays, 5(20), 3141-3146, 2010. 

[77] Gullu, M., Yilmaz, M., Yilmaz, I., and Turgut, B., “Datum 
transformation by artificial neural networks for geographic 
information systems applications”, International Symposium on 
Environmental Protection and Planning: Geographic Information 
Systems (GIS) and Remote Sensing (RS) Applications (ISEPP), 
Izmir-Turkey, 2011, pp. 13-19. 

[78] Lin, L. S., and Wang, Y. J., “A study on cadastral coordinate 
transformation using artificial neural network”, Proceedings of the 
27th Asian Conference on Remote Sensing, Ulaanbaatar, Mongolia, 
2006. 

[79] Mihalache, R. M., “Coordinate transformation for integrating map 
information in the new geocentric European system using artificial 
neural networks”, GeoCAD, 2012, 1-9. 

[80] Tierra, A., Dalazoana, R., and De Freitas, S., “Using an artificial 
neural network to improve the transformation of coordinates 
between classical geodetic reference frames”, Comput Geosci, 34, 
181-189, 2008. 

[81] Tierra, A. R., De Freitas, S. R. C., and Guevara, P. M. (2009), 
“Using an artificial neural network to transformation of 
coordinates from PSAD56 to SIRGAS95”, Geodetic reference 
frames, international association of geodesy symposia, Springe,r 
134, 173-178, 2009. 

[82] Tierra, A., and Romero, R., “Planes coordinates transformation 
between PSAD56 to SIRGAS using a multilayer artificial neural 
network”, Geod Cartogr, 63(2), 199-209, 2014. 

[83] Turgut, B., “A back-propagation artificial neural network 
approach for three-dimensional coordinate transformation”, Sci 
Res Essays, 5(21), 3330-3335, 2010. 

[84] Zaletnyik, P., “Coordinate transformation with neural networks 
and with polynomials in Hungary”, International Symposium on 
Modern Technologies, Education and Professional Practice in 
Geodesy and Related Fields, Sofia, Bulgaria, 2004, 471-479. 

[85] Ziggah, Y. Y., Youjian, H., Yu, X., & Basommi, L. P., “Capability 
of Artificial Neural Network for forward Conversion of Geodetic 
Coordinates (Ф, λ, h) to Cartesian Coordinates (X, Y, Z)”, Math 
Geosci, 48, 687-721, 2016b. 

[86] Lee, T. S., and Chen, I. F., “A two-stage hybrid credit scoring 
model using artificial neural networks and multivariate adaptive 
regression splines”, Expert Syst Appl, 28, 743-752, 2005. 

[87] Samui, P., “Multivariate Adaptive Regression Spline (MARS) for 
prediction of Elastic Modulus of jointed Rock Mass”, Geotech 
Geol Eng, 31, 249-253, 2013. 

[88] Friedman, J. H., “Multivariate adaptive regression splines”, 
Annals Statistics, 19, 1-67, 199. 

[89] Leathwick, J. R, Rowe, D., Richardson, J., Elith, J., and Hastie, T., 
“Using multivariate adaptive regression splines to predict the 
distributions of New Zealand’s freshwater diadromous fish”, 
Freshw Biol, 50, 2034-2051, 2005. 

 



 Journal of Geosciences and Geomatics 108 

[90] Alreja, J., Parab, S., Mathur, S., and Samui, P., “Estimating 
hysteretic energy demand in steel moment resisting frames using 
Multivariate Adaptive regression Spline and Least Square Support 
Vector Machine”, Ains Shams Engineering Journal, 2015. 

[91] Lall, U., Sangoyomi, T., Abarbanel, H. D. I., “Nonlinear dynamics 
of the Great Salt Lake: nonparametric short term forecasting”, 
Water Resour Res, 32, 975-985, 1996. 

[92] Attoh-Okine, N. O., Mensah, S., Nawaiseh, M., “A new technique 
for using multivariate adaptive regression splines (MARS) in 
pavement roughness prediction”, Proc ICE Trans, 156(1), 51-55, 
2003. 

[93] Attoh-Okine, N. O., Cooger, K., Mensah, S., “Multivariate 
Adaptive Regression (MARS) and hinged hyperplanes (HHP) for 
doweled pavement performance modelling”, Constr Build Mater, 
23(9), 3020-3023, 2009. 

[94] Wang, L. J., Guo, M., Sawada, K., Lin, J., and Zhang, L., 
“Landslide Susceptibility mapping in Mizunami city, Japan: A 
comparison between logistic regression, bivariate statistical 
analysis and multivariate adaptive regression spline models”, 
Journal of Catena, 135, 271-282, 2015. 

[95] Kisi, O., and Parmar, K. S. (2015), “Application of Least Square 
Support Vector Machine and Multivariate Adaptive Regression 
Spline Models in Long term Prediction of River Water Pollution”, 
Journal of Hydrology , 2015, 1-28, Accessed: February 10, 2017. 

[96] Samui, P. and Kim, D., “Modelling of reservoir-induced 
earthquakes: a multivariate adaptive regression spline”, Journal of 
Geophysics and Engineering, 9, 494-497, 2012. 

[97] Laurin, G. V., Puletti, N., Chen, Q., Piermaria, C., Papale, D., and 
Valentini, R., “Above ground biomass and tree species richness 
estimation with airborne Lidar in tropical Ghana forest”, 
International Journal of applied Earth Observation and 
Geoinformation, 52, 371-379, 2016. 

[98] Durmaz, M., Karslioglu, M. O., and Nohutcu, M., “Regional 
VTEC modelling with multivariate adaptive regression splines”, 
Advances in Space Research, 46, 180-189, 2010. 

[99] Durmaz, M. and Karslioglu, M. O., “Non-parametric regional 
VTEC modelling with Multivariate Adaptive Regression B-
Splines”, Advances in Space Research, 48, 1523-1530, 2011. 

[100] Chen, M., Tompson, A. F. B., Mellors, R. S., Ramirez, A. L., Dyer, 
K. M., Yang, X., and Wagoner, J. L., “An efficient Bayesian 
inversion of a geothermal prospect using a multivariate adaptive 
regression spline method”, Journal of Applied Energy, 136,  
619-627, 2014. 

[101] Dawod, G. M., Mirza, N. M., Al-Ghamdi, A. K., “Simple precise 
coordinate transformations for geomatics applications in Makkah 
metropolitan area, Saudi-Arabia”, Bridging the gap between 
cultures FIG working week, Marrakech Morocco, 2010b, 18-22. 

[102] Featherstone, W. E., “A comparison of existing co-ordinate 
transformation models and parameters in Australia”, Cartogr , 
26(1), 13-26, 1997. 

[103] Odutola, C. A., Beiping, W., and Ziggah, Y. Y., “Testing Simple 
Regression Model for Coordinate Transformation by Comparing 
its Predictive Result for Two Regions”, Academic Research 
International, SAVAP International Publishers, 4(6), 540-549, 2013. 

[104] Ziggah Y. Y., “Regression Models for 2-Dimensional Cartesian 
Coordinates Prediction: A Case Study at University of Mines and 
Technology (UMaT)”, International Journal of Computer Science 
and Engineering Survey (ISCSES), 3(6), 62, 2012. 

[105] Owusu, B., “An Assessment of Job Satisfaction and Its Effect on 
Employees’ Performance: A Case of Mining Companies in the 
[ Bibiani- Anhwiaso – Bekwai District] in the Western Region”, A 
Master Thesis of Business Administration submitted to the 
Department of Managerial Science, Kwame Nkrumah University 
of Science and Technology, Kumasi, Ghana, 108, 2014. 

[106] Peprah, S. M., “Field Trip and Technical Report”, Unpublished 
BSc Report Notes, University of Mines and Technology, Tarkwa, 
Ghana, 26, 2015. 

[107] Mohammed, A. S., “Performance Assessment of the Methods used 
in Transformation from Cartesian Coordinates to Geodetic 

Coordinates”, Unpublished BSc report, University of Mines and 
Technology, Tarkwa, Ghana, 65, 2015. 

[108] Quarshie, E., Nyarko, B. J. B., and Serfor – Armah, Y., “Studies 
of the Levels of some Toxic Elements in Soil and Tailings from 
Bibiani Mining Area of Ghana”, Research Journal of 
Environmental and Earth Sciences, 3(5), 512-520, 2011. 

[109] Zabihi, M., Pourghasemi, H. R., Pourtjhi, Z. S., and Behzadfar, M., 
“GIS-based multivariate adaptive regression spline and random 
forest models for groundwater potential mapping in Iran”, Environ 
Earth Sci, 75(665), 646-665, 2016. 

[110] Petrie, G., and Kennie, T. J. M., “Terrain modelling in surveying 
and civil engineering”, 19(4), 171-187, 1984. 

[111] Miller, S. J., “Methods of Least Squares”, Statistics Theory, 
Cornell University, USA, 3, 1-2, 2006. 

[112] Annan, R. F., Ziggah, Y. Y., Ayer, J., and Odutola, C. A., 
“Accuracy Assessment of heights obtained from Total station and 
level instrument using Total Least Squares and Ordinary Least 
Squares Methods”, Journal of Geomatics and Planning, 3(2),  
87-92, 2016a. 

[113] Schaffrin, B., “A note on Constrained Total Least Square 
estimation”, Linear Algebra and Its Application, 417, 245-258, 2006. 

[114] Akyilmaz, O., “Total Least Squares Solution of Coordinate 
Transformation”, Survey Review, 39(303), 68-80, 2007. 

[115] Golub, G. H., and Van Loan, C. F., “An analysis of the Total Least 
Squares problem”, SIAM Journal on Numerical Analysis, 17(6), 
883-893, 1980. 

[116] Annan, R. F., Ziggah, Y. Y., Ayer, J., Odutola, C. A., “A 
Hybridized Centroid Technique for 3D Molodensky-Badekas 
Coordinate Transformation in the Ghana Reference Network using 
Total Least Squares Approach”, South African Journal of 
Geomatics, 5(3), 269-284, 2016b. 

[117] Markovsky, I., and Van Huffel, S., “Overview of Total Least 
Square Methods”, Signal Processing, 87(10), 2283-2302, 2007. 

[118] Okwuashi, O., and Eyoh, A., “Application of total least squares to 
a linear surveying network”, Journal of science and Arts, 4(21), 
401-404, 2012a. 

[119] Ge, X., and Wu, J., “A New Regularized Solution to Ill-Posed 
Problem in Coordinate Transformation”, International Journal of 
Geosciences, 3, 14-20, 2012. 

[120] Okwuashi, O., and Eyoh, “3D Coordinate transformation using 
total least squares”, Academic Research International, 3(1),  
399-405, 2012b. 

[121] Mueller, V. A., and Hemond, F. H., “Extended artificial neural 
networks: in-corporation of a priori chemical knowledge enables 
use of ion selective electrodes for in-situ measurement of ions at 
environmental relevant levels”, Talenta, 117, 112-118, 2013. 

[122] Yegnanarayana, B., “Artificial neural networks”, Prentice-Hall of 
India Private Limited, 2005. 

[123] Hornik, K., Stinchcombe, M., and White, H., “Multilayer feed 
forward networks are universal approximators”, Neural Netw, 2, 
359-366, 1989. 

[124] Yonaba, H., Anctil, F., and Fortin, V., “Comparing sigmoid 
transfer functions for neural network multistep ahead stream flow 
forecasting”, J Hydrol Eng, 15(4), 275-283, 2010. 

[125] Konaté, A. A., Pan, H., Khan, N., and Ziggah, Y. Y., “Prediction 
of porosity in crystalline rocks using artificial neural networks: an 
example from the Chinese continental scientific drilling main 
hole”, Stud Geophys Geod, 59(1), 113–136, 2015. 

[126] Gope, D., Gope, P. C., Thakur, A., and Yadav, A., “Application of 
artificial neural network for predicting crack growth direction in 
multiple cracks geometry”, App Soft Comput, 30, 514-528, 2015. 

[127] Samui, P. and Kothari, D. P., “A Multivariate Adaptive 
Regression Spline Approach for Prediction of Maximum Shear 
Modulus (Gmax) and Minimum Damping Ratio (£min), 
Engineering Journal, 16(5), 1-10, 2012. 

[128] Craven, P. and Wahba, G., “Smoothing noisy data with spline 
function: estimating the correct degree of smoothing by the 
method of generalized cross-validation”, Numer Math, 31,  
317-403, 1979. 

 

 


