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Abstract  This research uses multi-temporal medium resolution satellite images and ground truthing to analyze the 
patterns and dynamics of Kenyan coastal mangrove forest cover changes spanning over 30 years from 1990-2015. 
The major aims of this study were to first analyze and assess mangrove forest cover and change over the period 1990 
to 2015 together with the specific drivers. Replacement of cloudy pixels with the best available non-cloud pixels 
from a secondary image was followed by maximum likelihood classification from which change detection analysis 
was carried out. Literature reviews and interviews were then used to correlate these land use changes with their 
potential drivers. Metrics were extracted from the image and correlated with the ground observed biomass values to 
model the linear relationship between the selected variable and biomass. Independent component transformation 3 
was found to show the strongest correlation with biomass with a coefficient of determination value of about 0.7. 
Based on the post classification change detection, during the epoch 1990-2000, mangrove area decreased by about 
7.03%, forestland decreased by about 21.11%, cropland also decreased by about 0.39%. Grassland, however, 
increased by about 3.54% while settlement increased by a significant 74 percentage points. 

Keywords: mangroves, biomass, correlation, clouds, Landsat 

Cite This Article: Anam Safi Ibrahim, and Thomas. G. Ngigi, “Assessment of Mangrove Spatial -Temporal 
Dynamics and Biomass by Remotely Sensed Data, Case Study Kilifi County: Kenya.” Journal of Geosciences 
and Geomatics, vol. 5, no. 1 (2017): 24-36. doi: 10.12691/jgg-5-1-3. 

1. Introduction 

Mangrove refers to brackish-water-tolerant trees that 
together constitute mangrove forest. Along the Kenyan 
coast to be specific, there exist about 8 species namely 
Rhizophora mucronata, Ceriops tagal, Bruguiera gymnorrhiza, 
Sonneratia Alba, Xylocarpus granatum, Avicennia marina, 
Lumnitzera racemosa and Heritiera littoralis. 

Mangroves are distinctive ecological units [1] and grow 
along coastlines in the inter-tidal zone between land and 
sea [2]. Mangroves support coastal ecosystems by 
providing environmental services and critical ecological 
functions, affecting both inland and oceanic resources [3]. 

Mangrove ecosystems exchange matter and energy with 
the adjacent marine and terrestrial ecosystems [4]. 

These forests are nutrient-rich environments which 
support a variety of food chains and function as nursery 
and feeding ground for fish and invertebrates [5].  

Mangrove forests along the Kenya coast cover 
approximately 60,323 ha (National Mangrove Plan 2015). 
These forests offer a range of benefits and opportunities to 
both local and national economic development, improved 
livelihoods and provision of environmental goods and 
services such as habitat for fish and other wildlife, 
shoreline protection, and carbon sequestration. 

Mangroves play a protective role against detrimental 
climatic impacts .They also support numerous species and 
serve to protect coastlines from storms [6] by breaking the 
storm-waves and dampening the tidal currents, and the 
sediments they trap help to build the coastline against 
forces of erosion [7]. 

 Mida Creeks holds substantial mangrove stands [8] it is 
also an important sea bird haven. Traditionally, mangrove 
forests provide the coastal human population with a variety 
of goods and services on which the poorer strata of society 
depend strongly [9]. However mangrove degradation at 
the Kenyan coast has occurred at an alarming rate as the 
result of growing subsistence needs [5]. 

This is observed along the Watamu-Mida creek area 
[19]. Mangroves grow on muddy and anaerobic soils 
which suffer from tidal inundation; as a result they show a 
distinctive pattern of biomass allocation [11].  

There exist several mangrove sites in Kenya such as 
Kiunga, Lamu, Tana Delta, Mida Creek, Kilifi Creek, 
Mtwapa Creek, Tudor Creek, Funzi Bay, Vanga, and 
others. Cumulatively, they occupy a total area of 
approximately 60,323 hectares. Out of this, the region 
with the greatest acreage of mangroves is Lamu, whose 
mangrove cover is more than half the total area covered by 
Kenyan mangrove (30,475 ha). 

In Kenya, mangroves supply quite a number of 
products directly – both timber and non- timber. Timber 
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products include firewood, building poles and charcoal for 
use in both urban and rural areas. Poles for use in 
construction are usually graded into different utilization 
classes based on their intended uses. Also mangrove poles 
find use in activities that include boat masts and fish 
traps/stakes preparation. 

In addition to protecting the coastline from natural hazards, 
mangrove forests provide goods and services that are of 
economic, ecological and environmental value to man [5]. 

In many developing countries, the survival of coastal 
communities is largely dependent upon the sustainable 
harvest of seafood, and the cultivation of fish and crabs in 
mangroves. Several studies have shown that, despite the 
numerous uses of mangrove forests they have been 
overexploited and converted to other land use. For 
instance, State of the Coast Report Kenya the [12] stated 
that, in Kenya, mangrove forest cover has been lost either 
due to conversion pressure, over-exploitation or pollution 
during the last twenty years. 

Sadly, similar to most parts of the world mangroves in 
Kenya are an endangered species due to a number of 
factors. Overexploitation for wood products for instance is 
the main agent of degradation.  

Major causes of mangrove cover loss include, but not 
limited to, excessive exploitation of the mangrove wood 
and non-wood products, haphazard conversion of mangrove 
vegetation for the purposes of urban and infrastructural 
development, pesticide and fertilizer pollution-induced 
degradation (eutrophication), exploitation of hydrocarbons 
and gas and mangrove vegetation clearance for agriculture 
and human settlement purposes[20]. 

The absence of cutting plans contribute largely to 
problems of mangrove management in Kenya. In most 
cases, the selective removal of quality poles of suitable 
species has left out very inferior species unsuitable for the 
market. Quality poles have been wiped out in most 
mangrove areas of Mombasa, Kwale and Kilifi districts 
where population density is highest along the coast. 

The major problem facing the management of 
mangrove forests in Kenya is the absence of baseline data 
and information to be used in the development of a 
comprehensive management plan. Unlike inland terrestrial 
forestry, very little attention is given to mangrove forestry. 
Mangrove harvesting is controlled by Kenya Forest 
Service (KFS) through licensing procedures and 
recommendation of mangrove poles to be harvested. 
However, these recommendations are based on wood 
demand rather than the actual resource base. 

Mangrove forests degradation are as a direct result of 
human driven factors such as over exploitation by the 
local communities, conversion of land use from forest to 
other land uses, industrial pollution among others. 
Deforestation of mangrove forests will also compromise 
their ability to sequester carbon. Approximately one-third 
of mangrove forests vegetation has been lost globally in 
the last 50 years alone. In China, specifically in the 
Guangdong Province, two-thirds of the mangrove forest 
cover has been lost in the previous two decades due to 
drivers such as coastal land reclamation, tidal waves 
destruction and the ever growing rates of urbanization [14]. 

One of the main sources of information that can 
highlight all areas degraded / deforested or those areas still 
healthy is satellite remote sensing. Using satellite imagery 

such as Landsat Thematic Mapper, the degree of 
mangrove cover degradation can be defined to acceptable 
accuracy level. Inclusion of these datasets in a GIS can 
enable comprehensive change detection analysis and 
biophysical modeling [15]. 

This research thus aims at assessing the spatio-temporal 
dynamics of the mangrove forest cover to quantify the 
extent of degradation, to quantify the biomass and carbon 
stocks in mangrove forests and assess their carbon 
sequestration ability as a function of their biomass. The 
main objective of the study is to assess both the temporal 
and spatial dynamics of mangrove forests at the Kilifi 
County, as well as determine their biomass. 

This study is very significant in a number of respects. 
First, it can be used as a decision support tool to inform 
policies on environmental conservation. In addition, the 
research can be useful in quantification of carbon 
sequestration efforts, contributing to climate change and 
global warming prevention efforts.  

Also, this research could be useful in directing targeted 
campaigns to the community surrounding mangrove 
vegetation, since the hotspot maps can identify areas of the 
community that should be prioritized for environmental 
conservation. 

2. Materials and Methods 

2.1. Study Area 
Administratively, the forest area in Kilifi falls under the 

jurisdiction of Sokoke Forest Station which together with 
Gede and Jilore Forest Stations form the Complex 
Arabuko Sokoke Forest ecosystem. The forest is under 
Kilifi Ecosystem management. The Forest area is divided 
into four (4) smaller management units called beats where 
two or more forest guards are supposed to be assigned for 
ease of surveillance and management; however, only one 
beat is currently manned by two (2) Forest guards. 

2.2. Data Requirements 
Table 1 shows the datasets that were sourced from the 

respective indicated sources and used for the purpose of 
this research. 

2.3. Image Acquisition and Preprocessing 
Multi-temporal Landsat satellite imagery was acquired 

from Regional Centre for Mapping of Resources for 
Development (RCMRD) and was subjected to pre-processing 
before information extraction. Pre-processing operations, 
sometimes referred to as image restoration and rectification, 
are intended to correct for sensor- and platform-specific 
radiometric and geometric distortions of data. 

Table 1. Datasets and their sources  

Data Source 
Landsat Imagery USGS 
Administrative Boundaries Survey of Kenya 
Gazetted forest boundaries Kenya Forest Service 
Mangrove boundaries Kenya Forest Service 
Spot Imagery RCMRD 
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Figure 1. Distribution of mangroves in Kilifi County with the different patches highlighted

Radiometric corrections were necessary to account for 
variations in scene illumination and viewing geometry, 
atmospheric conditions, and sensor noise and response. 
Each of these will vary depending on the specific sensor 
and platform used to acquire the data and the conditions 
during data acquisition. Also, it may be desirable to 
convert and/or calibrate the data to known (absolute) 
radiation or reflectance units to facilitate comparison 
between data. 

The geometric correction process involves identifying 
the image coordinates of several clearly discernible points, 
called ground control points (or GCPs), in the distorted 
image and matching them to their true positions in ground 
coordinates (e.g. latitude, longitude). Once several well-
distributed GCP pairs have been identified, the coordinate 
information is processed to determine the proper 
transformation equations to apply to the original image 
coordinates to map them into their new ground coordinates. 

Contrast enhancement, on the other hand, involves 
changing the original values so that more of the available 
range is used, thereby increasing the contrast between 
targets and their backgrounds. 

2.4. Generation of False Color Composites 
The display color assignment for any band of a multispectral 

image can be done in an entirely arbitrary manner. In this 
case, the color of a target in the displayed image does not 
have any resemblance to its actual color. The resulting 
product is known as a false color composite image. 

For this research, the false color composite scheme for 
displaying the Landsat multispectral imagery was Red = 
(NIR band), Green = (Red band) and Blue = (Green band). 

This false color composite scheme allows vegetation to be 
detected readily in the image. In this type of false color 
composite images, vegetation appears in different shades 
of red depending on the types and conditions of the 
vegetation, since it has a high reflectance in the NIR band. 

2.5. Information Extraction 
The intent of the classification process is to categorize 

all pixels in a digital image into one of several land cover 
classes, or "themes". This categorized data may then be 
used to produce thematic maps of the land cover present in 
an image.  

Normally, multispectral data are used to perform the 
classification and, indeed, the spectral pattern present 
within the data for each pixel is used as the numerical 
basis for categorization The objective of image 
classification is to identify and portray, as a unique gray 
level (or color), the features occurring in an image in 
terms of the object or type of land cover these features 
actually represent on the ground. 

In this research, we used the supervised classification 
technique where 7 information classes were adopted namely 
mangrove, forestland, cropland, settlement, wetland, bareland 
and grassland. In supervised classification, we identify 
examples of the Information classes (i.e., land cover type) 
of interest in the image. These are called "training sites".  

[16] Employed a more advanced approach to distinguish 
mangrove and non-mangrove regions in Gulf of California 
in Mexico. Maximum likelihood classification was first 
employed to generate spectral distance map then a 
receiver operating characteristic curve analysis applied to 
improve on the classification. 

 



 Journal of Geosciences and Geomatics 27 

The image processing software system is then used to 
develop a statistical characterization of the reflectance for 
each information class. This stage is often called 
"signature analysis". Once a statistical characterization has 
been achieved for each information class, the image is 
then classified by examining the reflectance for each pixel 
and making a decision about which of the signatures it 
resembles most. 

2.6. Post Classification Change Detection 
Change detection refers to the process of identifying 

differences in the state of land features by observing them 
at different times. In post-classification change detection, 
the images from each time period are classified using the 
same classification scheme into a number of discrete 
categories (i.e., land cover types). The two (or more) 
classifications are compared and the area that is classified 
the same or different is tallied and reported as change 
detection statistics. 

2.7. Removal of Cloud Pixels 
The images used in this research were severely affected 

by cloud cover, primarily because it is located in the 
coastal region of Kenya. This posed a challenge 
particularly during image classification because the clouds 
were interpreted as noise. To try and compensate for this, 
we prepared a custom model application that attempted to 
replace cloud pixels with best available alternative pixels 
from a secondary image, of the same area but captured on 
a different date.  

A Semi-automatic approach was used to identify cloud 
pixels in the main/primary image from which a cloud 
mask was generated. This approach was semi-automatic in 
the sense that the analyst manually identified cloud pixels 

through visual interpretation. This entails inspection of the 
image to identify the recorded pixel value of clouds.  

The assumption is that cloud pixels will tend towards 
the maximum pixel value in the image and as such the 
user simply supplies the minimum cloud pixel values. For 
example, if the analyst identifies that the cloud pixels in 
the image begin with a pixel value of 80, then all pixels 
whose values are greater or equal to 80 shall be masked as 
clouds. It is thus important that the minimum cloud pixel 
value be carefully chosen.  

The model then converts all the identified cloud pixels 
to zero and uses a conditional statement that for any pixel 
whose value is zero should be replaced by the pixel value 
of a supplied secondary image. Essentially what this does 
is to substitute the cloud pixels (now with value 0) with 
non-cloud pixels from the secondary image forming a 
clearer image.  

It must be stated that care must be taken in the 
identification of the minimum pixel value otherwise the 
image may appear patchy because some cloud pixels below 
the identified value will still appear whitish in the composite. 

Further, it must be noted that to achieve the desired 
results, the selection of the secondary image should be 
such that the image (secondary) be cloudless in areas 
where the main image has clouds. This, for instance, 
ensures that cloud pixels on the east in the main image are 
replaced by non-cloud pixels of the secondary image also 
in the east of secondary image.  

The result is an image composite that is way clearer and 
contains fewer cloud pixels than the original primary 
image and as such can be used in image analysis. The 
model builder application was converted to a tool in 
ArcGIS toolbox to take advantage of the friendly user 
interface. 

Conceptual framework for the cloud removal algorithm 
is as below. 

 
Figure 2. Flow diagram for adopted cloud removal methodology 
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2.8. Sample and Sampling Technique 
For this study, Sample plot design for biomass 

estimation was random-systematic where the first plot was 
selected randomly with the other plots following a 
constant difference ranging between 100 and 200 meters.  

• The cluster design comprised of four sample plots 
to capture the variability effectively. Each sample 
plot was 15 meter radius divided into concentric 
circles to reduce the field work to at most 1 day per 
sample plot. 

• The difference between clusters was 500 M. 
• For each sample plot, tree measurements that  

was taken included DBH, tree height and crown 
cover.  

Land cover classes derived from multispectral satellite 
image analysis formed the basis of stratification and the 
allocation of the sampling sites to land cover classes also 
known as strata. A stratified random sampling design with 
the probability of sampling sites allocated to a class 
proportional to size of the area covered by each land cover 
class (stratum) was considered suitable for the sampling 
framework and location of sampling sites in the field 
survey. Minimum dataset for above ground biomass 
estimation include: 

• Tree height (metres) 
• Diameter at breast height (centimeters) 
• Length of the crown (metres) 
• Width of the crown (metres) 
• Height to base of the crown (meters) 
• Proportion of branches and foliage in canopy volume 

(%) 
• Wood density. 

2.9. Estimation of Biomass from Allometric 
Equations 

Above ground biomass was then computed based on 
field observations where sampling was conducted on a 
total of 23 plots. A consistent assessment and research  
on biomass accumulation in mangroves is necessary  
in order to use the resources such as; yield of commercial 
products from forests, and for the development of 
silvicultural practices [18]. Estimation of biomass is 
significant in describing the status of mangroves, and as 
an essential component of carbon sequestration estimation 
[13]. 

Measurements of stem diameter and sometimes height 
are used to estimate tree biomass and carbon stock using 
allometric equations [3] defined allometry as a powerful 
tool for estimating tree weight from independent variables 
such as trunk diameter and height that are quantifiable in 
the field as it is stated by several [11, in order to use the 
mangrove forest sustainably and improve the management, 
it is important to estimate the amount of biomass 
accumulation. Kenya is mandated to develop a greenhouse 
gas inventory for the land based emissions for UNFCCC 
reporting. Since the mangrove forests are treated as a 
unique forest category. 

Published allometric equations developed for mangrove 
species by [11] (Above Ground Biomass = 0.251*ρ*(D) 
2.46 were used.  

At local level in Kenya, the allometric equation 
published was the one developed by [13] applied only to R. 
mucronata which grows naturally. This is currently the 
only allometric equation developed for a mangrove 
species which grows in a natural environment in Kenya.  

In each sampling quadrat, the following allometric 
measurements were obtained from field sampling of each 
tree within the boundary: Tree Height, Diameter at breast 
height, diameter of canopy or crown in perpendicular 
directions, height to the base of the crown and percentage 
of foliage cover in the crown canopy. 

In quantification of above ground and below ground 
mangrove biomass and subsequent determination of 
carbon volumes stored in the forest ecosystem, it is easy to 
derive, to acceptable accuracy, estimates of carbon 
sequestration, emission and storage. Furthermore, 
mangrove structure and biomass estimation is key in 
addressing global climate change adaptation and 
mitigation efforts [17]. 

Despite the fact that mangrove forests only constitute 
about three percent of global forest cover, their potential 
carbon storage capacity, both in terms of forested biomass 
and soil carbon, exceeds that of tropical forests [17] 
Moreover, the cumulative amount of mangrove carbon 
that finds its way into offshore areas, in the form of litter 
and leaves, is so significant that it accounts for over 10% 
of the sea water’s dissolved organic carbon generated 
from the mangroves [17]. 

Upon determination of trunk volume, the total trunk 
biomass in kilograms was then be computed through 
multiplication by the wood density corresponding to each 
tree species measured. Cumulative biomass was then 
computed for each tree in the sample quadrat then a 
summation was made for the results for all trees in the 
sample quadrat. The value was then be converted to tones 
per hectare. 

[17] mentions two distinct methodologies for estimation 
of mangrove biomass based on geospatial techniques. The 
first approach uses passive satellite data together with 
average biomass values. The second methodology uses 
height and/or volume measurements based on active 
LiDAR and radar instruments. 

2.10. Conceptual Framework 
The conceptual framework shown below summarizes 

the methodology discussed in the foregoing discussion in 
a flow diagram. 

3. Results and Discussion 

3.1. Image Classification 
Figure 4 below show maps for the land use/cover status 

for the years in consideration as generated using 
maximum likelihood classification. IPCC classification 
scheme was adopted during the Landsat imagery 
classification. However, since our main focus was 
mangrove cover change, auxiliary dataset was used to 
extract mangrove class from the forestland class and so 
the maps below show seven classes instead of six for 
IPCC using medium resolution imagery. 
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Figure 3. Flow diagram representing methodology adopted for this research 

 
Figure 4 (a).  Land use land cover map for the year  1990. Mangrove 
patches highlighted in black boxes 

 
Figure 4 (b). Land use land cover map for the year  2000. Mangrove 
patches highlighted in black boxes 
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Figure 4 (c). Land use land cover map for the year  2010. Mangrove 
patches highlighted in black boxes 

 
Figure 4 (d). Land use land cover map for the year  2015. Mangrove 
patches highlighted in black boxes 

Also to be noted when interpreting the land use maps, is 
the fact that a buffer of 15 km was applied inland from the 
shore of the Indian Ocean to restrict the study area to this 

strip instead of the entire Kilifi County. This was 
informed by the fact that mangroves mostly grow within 
this extent and since our focus was on mangrove cover 
change, it would make no sense to analyze the entire 
county when in fact mangroves do not grow inland 
beyond this buffer distance. On the map, the buffer is 
represented by a brown line. 

 
Figure 5 (a). land use land cover classes for 1990 

 
Figure 5 (b). land use land cover classes for 2000 

 
Figure 5 (c). land use land cover classes for 2010 
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Figure 5 (d).  land useland cover classes for 2015 

Black squares on the map serve to draw the map readers’ 
attention to the mangrove growing areas since they are the 
focus of this research but are small in extent relative to the 
entire county. Labeling for the figures is as under. 

Bar graphs in Figure 5(a-d) below are also presented to 
visually represent the acreages for each land cover class 
and a brief description of each is given. 

3.2. Change Detection 
Results in this section are presented with some 

significant caveats that should be considered when 
interpreting the results. The spatial resolution of the 
imagery used in this research was 30 m which is relatively 

low and this effectively limits identification of the 
localized small scale land cover changes that are less than 
30 meters. For instance, a particular forest could be 
degraded to some degree but not completely deforested 
but this may not be directly evident from the satellite 
imagery analyzed. 

In addition, Kilifi County has severely high levels of 
cloud cover and as such, acquisition of cloud free Landsat 
imagery was near impossible. To attempt to get rid of the 
clouds from the images so as to achieve a clearer image 
for use in classification in our area of interest, imageries 
for the year of consideration, separated by months, were 
acquired and merged together forming a clearer composite 
in a process that selected the best quality pixels from all 
the input imagery, further decreasing the accuracy of our 
analysis since the pixel values used were not the original 
values. 

Despite these caveats, the results presented in the 
following section have been prepared with a high degree 
of confidence in terms of their representation of the  
reality. Data obtained through change detection analysis of  
multi-temporal satellite imagery of our area of interest are 
registered in Table 2 below. 

Table 2 reveals that in 1990 about 0.17% area of Kilifi 
was under mangrove, 8.38% was under forestland,  
41.40% was under cropland, 49% was under grassland 
0.22% was under settlement, 0.27% was under wetland 
while 0.24% was under otherland. Similarly, in 2000 
about 0.15% area was under mangrove, 6.61% was under 
forestland, 41.24% was under cropland, 51.07% was 
under grassland 0.38% was under settlement, 0.34% was 
under wetland while 0.19% was under other land. 

Table 2. Land use land cover changes for the years 1990 to 2015 

Land Use/Land Cover Chang 1990-2000  Chang 2000-2010  Chang 2010-2015  

 Km2 Percentage Km2 Percentage Km2 Percentage 

Mangrove -150.00 -7.03% 98.00 4.94% 1.58 0.08% 

Forestland -22102.00 -21.11% 11453.00 13.86% -128.00 0.14% 

Cropland -2035.00 -0.39% -44040.00 8.55% 1445.00 0.31% 

Grassland 21833.00 3.54% 30336.00 4.76% -1319.00 0.20% 

Settlement 2042.00 74.09% -1872.00 39.02% 0.11 0.00% 

Wetland 873.00 25.65% 2726.00 63.75% 0.54 0.01% 

Other land -611.00 20.53% 1397.00 59.22% 0.31 0.01% 

 
Figure 6. Trend line showing the mangrove trend from the year 1990 to 2015 
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The trend line graph in Figure 6 above shows a 
graphical representation of the changes in acreage across 
the years of consideration and as can be seen, the trend 
lines are relatively flat showing that no significantly 
noticed positive or negative trend was noted over the years. 
Cropland however showed a slightly significant negative 
trend between in the epoch 2000-2010 but evened out 
onwards. Mangroves, on the other hand, witnessed a slight 
positive trend in the two epochs 1990-2000 and 2000-
2010 but evened out onwards. A slight negative trend was 
witnessed in forestland during the epoch 1990-2000 but 
then the trend line evened onwards. Generally, it can be 
reported that there was no significant trend, positive or 
negative, that was observed in land cover change in the 
epoch 1990-2015. 

3.3. Mangrove Cover Change 
The classified maps were then delineated along the 

three creeks to show Mangrove loss over time 
(1990_2015), degradation and land use cover change over 
the Project area over the specified time. Figure 7(a-c) 
shows the maps that indicate mangrove loss along 
Mtwapa creek. 

 
Figure 7 (a). Areas of Mangrove loss for the years 1990_2000, along 
Mtwapa creek 

 
Figure 7(b). Areas of Mangrove loss for the years 2000_2010 along 
Mtwapa creek 

 
Figure 7(c). Areas of Mangrove loss for the years 1990_2000, 
2000_2010 and 2010_2015 respectively along Mtwapa creek 

3.4. Accuracy Assessment 
The accuracy assessment results are summarized as in 

Table 3 below: 

Table 3. Accuracy assessment results for years 1990_2015 

Year Overall Accuracy Kappa Coefficient 
1990 85.80% 0.8254 

2000 85.73% 0.8302 
2010 84.98% 0.8187 
2015 87.04% 0.8459 

3.5. Above Ground Biomass Determination 
A non-destructive method of biomass estimation was 

done to record all the trees within a 10 m × 10 m quadrat 
sample. 23 sample plots were randomly distributed on 10 
m × 10 m plots. According to USDA protocols for the 
measurement, monitoring and reporting of structure, 
biomass and carbon stocks in mangrove forests, in order 
to estimate the carbon pool of above ground components, 
we must derive the biomass of each forest component like 
small trees, large trees etcetera. The determination of 
carbon pools of above ground biomass is achieved 
through multiplication of the individual component 
biomass by their percentage carbon concentration-
published carbon concentrations could be employed [22]. 

 In each plot tree Diameter at Breast Height (DBH) 
which is 1.3 m above the ground (where the highest prop-
roots reach) was measured using a diameter tape. Tree 
height was measured using a Laser Ace for each 
mangrove tree. For saplings and seedlings qualitative 
methods were used to enumerate per species within 3 m × 
3 m and 1 m × 1 m subplots at the center of the main plot 
for determination of species regeneration. The minimum 
distance between the plots was 50 m. 

3.5.1. Allometric Equations 
Published allometric equations developed for mangrove 

species by [11] (Above Ground Biomass = 0.251*ρ*(D) 
2.46 were used. Where ρ = wood density, D = Diameter at 
breast height (DBH), 0.251 is constant. A total of six different 
species for mangroves were identified during the project. 
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Figure 8. Field points distributions for biomass estimation 

At local level in Kenya, the allometric equation 
published was the one developed by [13] applied only to 
R.mucronata which grows naturally. This is currently the 
only allometric equation developed for a mangrove 
species which grows in a natural environment in Kenya.  

The wood density for each species of mangrove was 
taken from which has been developed for this region [21]. 

3.5.2. Linear Regression 
In statistics, linear regression is an approach for 

modeling the relationship between a scalar dependent 
variable y and one or more explanatory variables (or 
independent variables) denoted X. The case of one 
explanatory variable is called simple linear regression. 

In this research, the dependent variable to be modeled 
was biomass whereas the explanatory variables were the 
satellite imagery data (and deliverables). Simply put, we 
attempt to model the linear relationship between satellite 
imagery data and biomass values collected through ground 
survey such that the generated linear equation can be 
adopted as the interpolating polynomial which accepts the 
imagery pixel value and transforms it to a biomass value 
for the pixel in question. 

To this end, 23 image pixels were extracted that 
geographically corresponded to the field surveyed plots 
and were correlated to determine the relationship between 
the two setoff variables. Imagery pixels extracted for 
correlation were those of the original image 
transformation. This means that the original image was 
transformed to generate the Principal Components 
Transformation, Independent Component Transformation, 
Normalized Difference Vegetation Index. 

This resulted in a set of 21 images (10 principal 
components, 10 independent components and 1 NDVI 
image). In all these images, the 23 pixels geographically 
corresponding to the field surveyed plots were extracted 
and a linear regression was performed to generate the 
linear relationship between the image and the biomass. 
Coefficient of Determination statistic was used to indicate 
the degree of linear correlation and the linear model with 
the strongest correlation was adopted to serve as the 
interpolating polynomial. 

3.5.3. Image Derived Metrics 
In order to generate an interpolating polynomial that 

would be used to interpolate biomass across the landscape 
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based on satellite imagery, it was necessary that we 
generate a few metrics from the image from which we 
would correlate with the ground sampled biomass values 
thus coming up with the interpolating polynomial. 

To this end, therefore, we generated three image 
derived metrics which included Principle components 
Transformation images, Independent component 
transformation images and NDVI images. The principle 
components and independent components transformations 
each resulted in 8 images based on each Landsat band. 
Each of these images were then correlated with the ground 
based biomass sample values. 

This was accomplished by extracting the pixel values, 
from the image metrics, that geographically corresponded 
to the ground biomass values and these were used to 
generate first order linear regression models. The 
Coefficient Of Determination statistic was then determined 
for each of these linear models and the model with the 
highest Coefficient Of Determination statistic, in this case 
the equation relating independent component 3 metrics 
with biomass, was adopted as the interpolating polynomial 
to estimate biomass across the landscape since it 
statistically provided a stronger correlation. 

Using this approach, we were able to derive biomass 
maps for the entire landscape under study by simply 
generating the image metrics and then applying the 
interpolating polynomial equation on the metrics to 
estimate biomass per pixel in other words transforming 

image metrics image to biomass image, using the first 
order interpolating polynomial. Graphs for each of these 
polynomials together with their Coefficient of Determination 
statistics are shown below. 

Graphs showing the linear regression models for each 
image and the Coefficient of Determination value for  
each are shown below in Figure 9. The adopted 
interpolating polynomial was that between independent 
component analysis 3 and biomass that showed a 
Coefficient of Determination value of 0.6. For 
demonstration, only graphs for principle component 1 and 
2 have been shown. Also, independent component 3 and 4 
have been shown. 

Of the three independent variables the independent 
component transformation (ICA) was found to correlate 
more with Biomass (Field data), therefore the equation for 
the ICA was adopted for interpolation of Biomass across 
the study area. 
Equation: 
y = -0.8982x - 868.15 
R² = 0.5718 
Y= dependent variable (Biomass) 
X= independent variable (satellite observations) 
R²= A number that indicates how well data fit a statistical 
model. A Coefficient of Determination of 1 indicates that 
the regression line perfectly fits the data, while a Coefficient 
of Determination of 0 indicates that the line does not fit 
the data at all. 

 
Figure 9 (a – d). Examples of Transformation Graphs that were generated 
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4. Conclusion 

The research that was carried out in Kilifi County 
located in the Kenyan coast clearly illustrated the 
usefulness of multispectral satellite imagery in detecting 
changes in land use, and particularly mangrove cover 
change, in a quick yet accurate fashion. Also, the research 
has clearly demonstrated the usefulness of satellite 
imagery in estimation of biomass across the landscape 
through correlation of image derived variables with field 
sampled biomass data. 

The study reveals that between 1990 and 2015, the 
mangrove cover change did not show any noticeable trend 
i.e. in the epoch 1990-2000, the percent cover change was 
-8%. In the epoch 2000-2010, the percent cover change 
was 5% while in the epoch 2010-2015, the percent cover 
change was 0.04%. These figures show that there was no 
trend in the mangrove cover change over the study area in 
the epoch 1990-2015. 

It was also demonstrated, through this research, that an 
interpolating polynomial – used to interpolate biomass 
values across the landscape – can easily be generated 
based on imagery derived variables. Specifically, this 
research used imagery generated variables such as NDVI, 
Principle Components Transformation and Independent 
Component Transformation as the independent variables 
in generation of the interpolating polynomial whereas 
field sampled biomass values were used as dependent 
variables. 

Based on the Coefficient of Determination statistic 
comparison, independent component transformation (ICT) 
and particularly ICT 3 showed a strong correlation with 
the field sampled biomass values. Specifically, the 
Coefficient of Determination value for ICT 3 was about 
0.6 which was the highest of all. Consequently, the 
interpolating polynomial that was a result of the 
correlation between biomass and ICT 3 was adopted to 
interpolate biomass across the landscape. 

Also, it was noted that the area near the ocean, 
particularly in Kilifi near Indian Ocean is severely 
affected by cloud cover. This causes a challenge, 
especially during image classification because these cloud 
pixels ‘confuse’ the classifier and in effect act as noise. 
This therefore means that the results of the classification, 
change detection and all other secondary processes that 
depend on their results shall give misleading values, 
rendering the entire analysis useless. 

For the purpose of this research, an attempt was made 
to replace cloud pixels with best available pixels from 
secondary image as discussed in methodology section. 
This partially solved the problem but the cloud shadows 
still persisted. In further research, we propose that an 
automated (or semi-automated) approach be formulated 
that shall not only replace cloud pixels but shall also take 
care of shadows that usually form at an angle from cloud 
pixels. 

Also, in the generation of interpolating polynomial, we 
focused on first order polynomial. Even in the first order 
polynomial, we only focused on single variable polynomial. 
For purpose of further research, we recommend a test to 
be done using multi-variate approach i.e. linear regression 
where the predicted outcome is a vector of correlated 

random variables rather than a single scalar random 
variable. We also recommend that the outcome of the two 
procedures be compared with the outcome in this research 
for purposes of accuracy reporting. 

Furthermore, in the post-classification change detection, 
this research only focused on the change statistics over the 
epoch 1990 – 2015 which primarily was the time interval 
of interest for this study. We recommend for further 
research that an attempt be made to model and predict 
future changes in mangrove cover change, say in the next 
50 years or so for purposes of guiding policy making and 
planning. 
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