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Abstract  Identification of spatial distribution of geochemical anomalies for mineral exploration is a fundamantal 
issue in the field of exploration geochemistry. Conventional methods are hard to identify geochemical anomalies due 
to extreme values. In this study, C-A fractal model is first applied to identify anomalies, GIS is then used to 
visualized the results. 1482 geochemical analytical data of Cu ore-forming element from Jiurui copper mining area 
are used as as one experiment. The results show that this method can effectively identify spatial distribution of 
geochemical anomalies. These anomalous areas can be used to interpret possible origins of mineralization, which is 
agreement with petrological analysis and field survey results. 
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1. Introduction 
Spatial distribution identification of geochemical 

anomalies is a matter of great interest for geochemical 
exploration. In the 1960s, several procedures had been 
recommended for selecting threshold against which 
anomalies can be judged [15]: (1) carry out an orientation 
survey to define a local threshold against which anomalies 
can be judged; (2) order the data and select the top 2½% 
of the data for further inspection if no orientation survey 
results are available; and (3) for large data sets, which 
cannot easily be ordered, use [MEAN ± 2SDEV] (SDEV: 
standard deviation) to identify about 2½% of upper (or 
lower) extreme values for further inspection and an 
underlying assumption that the data are drawn from a 
normal distribution [22]. The data distribution is important 
and that must be known before doing anything else. But 
this basic requirement is still widely neglected although a 
number of papers and books address the problem [20,23]. 
To avoid this problem extreme, i.e. ‘obvious’ outliers, are 
often removed from the data prior to the calculation [22]. 
Another method is to first log-transform (log10 or ln) the 
data to minimize the influence of the outliers and then do 
the calculation [21]. It is usually found that the 
transformed data do not follow a normal distribution 
[1,2,3,4,17,19]. The widely-used classical statistical 
methods are likely to fail for strongly skewed data [21]. 
[22] used robust statistics [16] and exploratory data 
analysis [24]: the boxplot and the [median ± 2*mad] (mad: 
median absolute deviation) rule and empirical cumulative 
distribution functions for assisting in the estimation of 
threshold values and the range of background data.  

Frequency analysis, such as histogram construction,  
Q-Q plots, probability plots, and box-plot have been 
commonly used for anomaly separation [14,25,26,27,28]. 
These non-spatial statistical methods ignore the spatial 
information or autocorrelation structure of the geochemical 
data. It is shown that the consideration of geometry and 
scale-independent properties of geochemical landscapes 
aims to accurately separate background and anomalies 
[7,8,9]. [7] proposed the C-A fractal model. This model 
has been widely used to separate geochemical anomalies 
from background by considering both frequency 
distributions and spatial self-similar properties of 
geochemical variables [10,11,12,14,18,29,30]. 

In this study, spatial distribution of geochemical 
anomalies of Cu element will be identified by means of 
GIS and C-A fractal model with a case study of 1341 
stream sediment samples with area of 8130 km2 and scale 
of 1:200.000 in Jiurui copper mining area in China. 

2. Materials and Methods 

2.1. Materials 
According to the requirements of 1:200.000 regional 

stream sediment survey, a multi-element sediment 
geochemical survey of streams was carried out in the 
study area. A total of 1482 composite samples 
representing about 5364 km2 were collected. The sampling 
density was 1 composite sample per 4 km2. No samples 
were taken at grids where access was hard to obtain. There 
are more than 20 indexes in a composite sample, including 
Ag, As, Au, Be, Cd, Cu, Hg, Li, Mn, Mo, Nb, Pb, Sb, Sn, 
Th, V, W, Y, Zn, Al2O3, CaO, K2O, Na2O etc. There are 
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two metallogenelic series in the study area. A total of 13 
ore deposits were found marked by numeric characters 
from 1 to 13 (see Figure 1). Au, Ag and Cu are three ore-
forming elements. Cu was chosen to identify geochemical 
anomalies in this study. 

 
Figure 1. Location map of 1482 stream sediment samples and 13 ore 
deposits 

2.2. The Concentration-area Fractal Model 
[8] proposed the concentration-area method by 

considering the spatial scale of the distribution of the data 
to separate geochemical anomalies from background. 
Contour maps can be used to obtain approximate relations 
between areas 𝐴(𝜌) and concentration values 𝜌, with 𝐴(𝜌) 
decreasing for increasing 𝜌 . Conversely, the area with 
concentration values less than 𝜌 is an increasing function 
of 𝜌. If the element concentration per unit area satisfies a 
fractal or multi-fractal model, then the area 𝐴(𝜌)  has 
indeed a power-law type relation with 𝜌 . When the 
concentration per unit area follows a fractal model, this 
power-law relation has only one exponent. On the other 
hand, when the concentration per unit satisfies a multi-
fractal model with a spectrum of fractal dimensions, then 
several separate power-law relations between area 𝐴(𝜌) 
and 𝜌 can be established. This empirical model states that 
the area 𝐴(𝜌), enclosing concentration values 𝜌 lesser or 
equal than a pre-defined threshold ν, follow a power-law 
relation like 

 α1( ν)A ρ ρ−≤ ∝  (1) 

Conversely, for areas with concentration values 𝜌 
greater than a pre-defined threshold ν , the relation 
becomes 

 α2( ν)A ρ ρ−> ∝  (2) 

In equations (1) and (2) α1  and α2  represent 
characteristic exponents. Using multifractal theory [8] 
derived similar power-law equations. Therefore, for a 
range of 𝜌  values close to its minimum, the predicted 
multi-fractal power-laws take the form 

 ( ) α11A Cρ ρ−=  (3) 

and 

 ( ) ( ) βA T A Cρ ρ− ∝  (4) 

where 𝐴(𝑇)  is the total sampled area, 𝐶  and 𝐶1  are 
constants, and α1 and β are exponents associated with the 
maximum singularity exponent. For the range of 𝜌 values 
close to its maximum, the equation obtained is  

 ( ) α22A Cρ ρ−=  (5) 

where 𝐶2 is a constant, and α2 is the exponent associated 
with the minimum singularity exponent. Therefore, 
assuming a multi-fractal model, equations (3), (4), (5) are 
equivalent to equation (1) and (2), and whenever a plot of 
log 𝐴(𝜌) vs. log 𝜌 is obtained, values of the constants and 
exponents can be extracted. It is called concentration-area 
plot (C-A plot). The break in linearity of the experimental 
data points occurs for the value 𝜌 = ν corresponding to 
the threshold value for the anomalous area.  

In the study, the data were first spatially interpolated to 
a fine (100×100) regular grid, increasing the number of 
data points so they can be used as a surrogate for 
measuring areas. The interpolated grid size was computed 
as [xmax - xmin]/ngrid, with a default value of 100 for ngrid. 
Akima's interpolation function was used to obtain a linear 
interpolation between the spatial data values [5,6]. Then 
the interpolated values outside the survey area boundary 
were trimmed away, so there was no interpolation to 
points outside the survey area. The original and 
interpolated data together define the x-axis of the CP-plots. 
In the C-A plot, the y-axis shows the percentage of the 
interpolated values, plotted on a logarithmic scale, that are 
larger (or smaller) than each value plotted on a 
logarithmic scale on the x-axis. As the interpolated points 
are on a fine regular grid the number of points is a 
surrogate for the area of the interpolated map that is larger 
(or smaller) than the corresponding value on the x-axis. 
Thus the C-A plot displays the relationship between the 
percentage of the survey area that has a particular values 
and the actual value. Background levels will occur 
frequently and will represent the majority of the survey 
area, and low or high extreme values-containing areas will 
represent small percentages of the survey area. A single 
straight line indicates a single fractal relationship 
controlling the data distribution; multiple straight lines 
indicate multiple fractal processes controlling the data 
distribution. In order to reduce the influences of 
interpolation algorithm and data transformation on 
computing the C-A plot, the data were first Box-Cox 
transfromed so that extreme values and outliers do not 
over-influence the resulting interpolation, then simple 
triangulation was employed for the interpolation to avoid 
the data from being excessively smoothed as that will 
“smeer out” the very features being sought.  

2.3. Data Treatment with Computer 
Softwares 

The descriptive statistical parameters and exploratory 
data analysis plots were performed and conducted using 
the StatDA and MASS packages of Statistical Modeling & 
Computing - R Language (version i386 2.15.0) with the 
StatDA and MASS packages. Maps of spatial distribution 
of geochemical anomalies were produced with ArcGIS 9.3. 
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3. Results and Discussions 

3.1. Cu Concentration in the Study Area  
Table 1 provides information of Cu concentration. The 

mean value of Cu concentration in the study area was 
37.33 μg/g, higher than the median value of 27.1 μg/g. 
The skewness of 15.8 indicates that Cu has an 
asymmetrical distribution with a long tail to the right and 
a positive skew. The kurtosis of 288.5 quantifies the shape 
of the data distribution does not match the normal 
distribution, a distribution is much more peaked than a 
normal distribution. Care must be taken in interpret ing 
the high values. It is likely the high values (or maximum 
values) of Cu concentration was caused by mineralization. 

Table 1. Summary table of Cu concentration for original data and 
Box-Cox transformed data 
Variables Cu B-C (Cu) 
Min 9.2 0.91 
1st Qu. 22.8 0.98 
Median 27.1 0.99 
Mean 37.3 0.99 
3rd Qu. 33.6 1.0 
Max 1926 1.03 
Skew 15.8 -0.16 
Kurt 288.5 2.043 
Cu in 10-6 [μg/g]; Min = minimum value; 1st Qu. = 1st quartile; Median = 
median value; 3rd Qu. = 3rd quartile; Max = maximum value; Skew = 
coefficient of skewness; Kurt = coefficient of kurtosis 

The spatial distribution of Cu in the study area shows 
the influence of mineral deposits. There is a high value 
pattern of Cu in the north and the east. There are also 
some relatively high values scattered in the north-west 
where no deposits has so far detected showing the 
complexity or spatial heterogeneity of Cu concentration. 

The distribution of the Cu is far from symmetrical. For 
Box-Cox transformed data, the mean value is equivalent 
to the median value, which shows that transformed Cu 
concentration is evenly divided around the mean. The 
kurtosis of -0.156 is close to zero (greater than -1.0 and 
less than 1.0), indicating that the distribution of the 
transformed data is close to symmetrical.  

Figure 2 shows the distribution of the variable Cu. The 
histograms show that the distribution of the “raw” data are 
strongly right-skewed, many very high values dominate 
the plot (Figure 2a). The distances of these high values are 
far from the main body of the data. The distribution of 
original data is not normal but extremely right skewed, as 
a result typical asymmetrical, sigmoidal S-shapes are not 
present in the ECDF-plot (Figure 2b). To reduce the 
influence of the outliers and to obtain much information of 
value about the shape of the distribution, the data were 
scaled by using Box-Cox transformation. The Box-Cox 
transformation results in an almost symmetrical 
distribution of the strongly right skewed original data. The 
histogram and density trace still show a slight right skew 
(Figure 2d). The ECDF-plots begin to display an S-shape 
(Figure 2a), the right skew is however still clearly 
reflected. 

 
Figure 2. Histogram, density trace, 1-D scatter plot, boxplot and ECDF-plot of Cu concentration for raw data (a, b) and Box-Cox transformed data (c, d) 
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3.2. Spatial Distribution of Anomalies 
A display of four panels was shown in Figure 3. The 

percentage cumulative probability (CPP) plot of the data 
in the upper left and the CP plot of the interpolated data to 
be used in the C-A plot in the upper right. The lower left 
panel contains an image of the interpolated data, and the 
lower right the C-A plot. The distribution of Cu 
concentration is positively skewed, therefore, the data 
were first log-transformed so that extreme values do not 
over-influence the resulting interpolation. 1341 sampling 
points were used to generate 8996 grids after outside the 
survey area boundary were trimmed away. The image of 
the interpolated values were displayed with low values 
being plotted in blue, and as the interpolated values 
increase they take on green, yellow and orange colors. 

The C-A plots in Figure 3d and Figure 4b were 
prepared by ordering the interpolated values from the 
maximum values downwards. It can be seen that the data 
are spatially multi-fractal, different multiple populations 
that are spatially dependent are present in the data set. A 
break at 48 μg/g of the straight line represented a 
threshold that was used to classify the Cu data set into 
background and anomalous populations. Other breaks 
indicating the presence of at least five populations in the 

Cu data: low background (≤ 18 μg/g), high background 
(18 - 48 μg/g), low anomaly (48 - 200 μg/g), high anomaly 
(200 - 500 μg/g) and very high anomaly (≥ 500 μg/g). It is 
apparent that the data do not follow a single fractal 
relationship, with another relationship present at low 
levels and a more complex relationship above 200 about 
μg/g Cu near the smelters. To focus on the lower end of 
the fractal distribution, the interpolated values from lowest 
to highest were ordered to achieve C-A plot see Figure 4a. 
It is immediately apparent that there are three major 
fractal processes present: one is very low background 
below about 10 μg/g; one between 10 μg/g and 48 μg/g; 
one above 48 μg/g. Figure 4 shows spatial distributions of 
different background levels and anomaly levels of the Cu 
data based on thresholds defined from concentration-area 
fractal method. Very low to low background Cu values are 
distributed in the southern (lower half-part) part of the 
study area (Figure 5). High background Cu values are 
mostly distributed in the south, west and south-western 
parts. Low anomaly Cu values are mostly distributed in 
the north, east, north-west and some in the south-western 
parts. High anomaly and very high anomaly Cu values are 
distributed in the northern part and north-eastern part 
where known ore deposits were located. 

 
Figure 3. The CP-plots of the original data (a) and of the interpolated data (b), the grey-scale map of the interpolated data (c) and the C-A plotfor log-
transformed Cu (d) 
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Figure 4. The C-A plots for Cu: cumulated upwards (a) and downwards (b) 

 
Figure 5. Spatial distribution map of background and anomalous samples for Cu 

4. Conclusions 
Geochemical anomalies provide significant ore-finding 

information. The identification of anomalous areas is thus 
an important part of data processing. In this study, 
geochemical anomalies were identified by means of GIS 

and C-A multifractal model. This method overcomes the 
distortion effects of outliers on the conventional methods. 
The results show that outlier areas accord the objective 
reality and have a good conformity with known deposits 
in Jiurui copper mining area. Two important issues can be 
concluded: (1) Geochemical anomalies might distort the 
analysis to a great degree, it is therefore suggested to do 
the data transformation before the analysis. (2) 
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Geochemical data are spatially multi-fractal, C-A model 
can effectively be used to separate and identify different 
multiple populations especially extreme values or 
anomalies. 
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