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Abstract  Like many metropolitan regions Chicago area characterized by Urban Sprawl. The ability to manage 
this Urban Sprawl for a sustainable future presents numerous challenges for geographers and planners. Nowadays 
remotely sensed data are inherently suited to provide information on urban land cover (LC) characteristics, change 
over time, and modeling. This paper has attempted to investigate Urban Sprawl in northeastern Illinois, and analyze 
its impact on the agricultural land and nature over time. The satellite images were acquired and classified to prepare 
the base maps, change detection was employed to analyze changes overtime. The Land Change modeler was used to 
predict the future urban growth of the area in 2020 and 2030. The results indicated that between (1989 and 2010) the 
built up area increased by 82.2%, which associated with a loss of 25.8% of the valuable agricultural lands and a 
decline in the urban open spaces and other landscape categories by 32.5%. The predicted maps showed an increase 
of built up land, which will cause further loss of agricultural lands mainly in the suburbs. 
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1. Introduction 
Urban sprawl has received increasing attention from 

planners, geographers and policy makers who are 
advocating in sustainable urban development. Urban 
sprawl is a land transformation patterns characterized by 
low-density settlement, often random development and 
rapidly expanding in a manner that radiates from urban 
centers [1]. It is characterized by development patterns 
along the periphery of cities and highways or roads 
connecting major settlements. Urban sprawl has several 
social and economic consequences, such as but not limited 
to loss of open space, environmental pollution, and 
congestion [1,2]. It is also associated with loss or 
fragmentation of natural areas (e.g. wetlands, wildlife 
corridors), increased flood risks, and overall reductions in 
quality of life [2].  

The Chicago metropolitan region provides a classic 
example of this urban land transformation. For instance, 
between 1970 and 1990, Northeastern Illinois lost 440 
square miles of farmland [2]. This is an amount equal to 
twice the current land area occupied by the City of 
Chicago. The transformation hasn’t stopped, and factors 
such as city’s roads and transportation systems, ongoing 
federal subsidies for housing, permissive local governments, 
and politically weak regional planning agencies are 
effecting continued urbanization [3,4]. According to the 
Northeastern Illinois Planning Commission (NIPC) (now 
the Chicago Metropolitan Agency for Planning (CMAP)), 
rapid population growth (i.e., at rate of 25%) was 
predicted for the Chicago metropolitan region between 
1990 and 2020. In other words, the metro population is 
expected to grow by about 1.8 million between 1990 and 

2020, which higher than the 4% growth recorded 
preceding decades i.e., between 1970 and 1990 [4]. 

Simulation models, integrating remote sensing and GIS, 
have greatly expanded the opportunities for providing 
accurate and up-to-date information of modeling the 
changes and predictions of Urban expansion. Since the 
Landsat data dates back to 1972, the remote sensing 
techniques evaluated patterns of cities’ growth over time. 
The techniques have also evaluated drivers of changes 
including, but not limited to, bio physical factors (i.e., 
temperature, rainfall, slope, drainage etc.) and socio-
economic drivers (i.e., the growth of population, 
industrialization, infrastructure and technological [5]. 
These findings have enhanced the understanding of causes, 
consequences and drivers of growth of many cities around 
the world. 

However, simulation models vary in strengths by which 
they evaluate urban growth patterns and predict future 
changes. For instance, while some models (e.g., Markov 
chain) [6] produce the prediction of land use categories 
without spatial details [7], i.e., the future land use depends 
only on the current state and not on the sequence of events 
that preceded it [8,9]; others (e.g., Geomod, [10]) consider 
the spatial details, but predict only a one-way transition 
from one category to one alternative category [11]. 
Studies have started using cellular automata and Markov 
chain (i.e., CA_Markov) together to give spatial 
dimension to Markov model which is weak in spatial side 
[10,11,12]. The CA_Markov has an ability to predict any 
transition among any number of categories which makes it 
a better choice than when Geomod is used standalone 
[10,11]. Recently, Land Change Modeler (LCM), which 
uses the combination of Multi-layer perceptron (MLP) 
Neural Network and Markov chain modeling technique is 
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employed to simulate urban growth. The method uniquely 
finds the best fitting and hence suitable for modeling 
complex relationships among factors involved in Land 
changes [7,13,14,15]. Besides, the MLP in the model also 
enhances the ability of the model to accommodate 
relationships that are perhaps non-linear [16,17]. This 
study investigated the urban sprawl in Northeastern 
Illinois, especially the impacts on the agricultural and 
natural landscapes. Similar studies have been done for the 
neighboring area in the past [12,18]. However, the studies 
were conducted using the data covering the period 
between 1972 and 1997 and an approach referred to as 
dynamic landscape simulation (DLS) approach, necessitating 
the need for a study with recent data and a more robust 
approach. 

2. Materials and Methods 

2.1. Study Area 
The study area for this research stretched over a large 

portion of Northeastern Illinois. The area includes a large 
part of the Chicago metropolitan area (9.4 million), which 
is the third largest metro in the USA following New York 
(19 million) and Los Angeles (12 Million) [19]. It 
includes Cook, DuPage, Kane, Kendall, McHenry, Will, 
Grundy, Boone, De Kalb and a large part of lake and 
Kankakee counties and covers an area of 6,853.8 square 
miles Figure 1.  

 
Figure 1. Study Area Location Within US and Illinois counties 

The majority of the population resides in Cook county 
(60%) followed by DePage (10%) and Lake (8%) counties. 
The census data over the study period depicts that the 
region has experienced significant population growth, 
which is a major driver of urban land transformation and 
expansion. For example, from 1990 – 2000, the population 
of metro Chicago increased by 11.58%. Though the rate 
reduced in the subsequent decade, i.e., between 2000 and 
2010, population still grew by 3.86% (See Table 1). 

The population growth has impacted the metro area is 
characterized by diverse land cover types including some 
of the world’s best remaining rare natural habitats, and 
expansive agricultural lands. Agriculture was the 
dominant land cover type in the past decades, though like 
most metropolitan areas, it is experiencing dramatic land 
cover changes. From 1972 to 1997 there were 37% and 
21% losses, respectively, of agricultural and natural lands 
in Chicago metropolitan area [18]. According to the study 

[18], the suburban land transformation was associated 
with human settlement triggered by redistribution of 
population, decentralization of metropolitan functions, and 
the growth and development of suburban areas. 

Table 1. Population, and Population Growth in the Study Area 
between 1990-2000 and 2000-2010 

County 1990 2000 2010 
Growth 

1990-2000 
(%) 

Growth 
2000-2010 

(%) 
Cook 5,105,067 5,376,741 5,194,675 5.3 -3.4 

DeKalb 77,932 88,969 105,160 14.2 18.2 

DePage 781,666 904,161 916,924 15.6 1.4 

Grundy 32,337 37,535 50,063 16.1 33.4 

Kane 317,471 404,119 515,269 27.3 27.5 

Kendall 39,413 54,544 114,736 38.4 110.2 

Mchenry 183,241 260,077 308,760 41.9 18.7 

Will 357,313 502,266 677,560 40.6 34.9 

Lake 516,418 644,356 703,462 24.7 9.2 

Kankakee 96,255 103,833 113,449 7.9 9.3 

Total 7,507,113 8,376,601 8,700,058 11.6 3.7 
Source: US Census Bureau. Note: LU/LC change was calculated 
between 1989, 1999, and 2010, while the population growth was found 
for 1990, 2000 and 2010. 

2.2. Data 
Three cloud-free Landsat satellite images/scenes were 

downloaded from a U.S. Geological Survey (USGS) web 
site (http://glovis.usgs.gov/) to conduct this research. Two 
of these images, October 4th 1989, and September 12th 
2010 images, were Landsat 5 Thematic Mapper (TM) 
images while the third image, September 22nd 1999 image, 
was a Landsat 7 Enhanced Thematic Mapper (ETM+) 
image. The images referenced to the World Geodetic 
System (WGS) 1984 ellipsoid and the Universal 
Transverse Mercator (UTM), Zone_16N coordinate 
system. Additionally, the images were characterized by a 
spatial resolution (pixel size) of 30 meters in the visible 
and IR (infrared) bands and each image covers 170 km 
*183 km. The Properties of the selected Landsat Images 
are shown in Table 2. 

Table 2. Specifications of Landsat Images Selected 

Year 
Date of 

Acquisition 
mm/dd/yyyy 

Sensor Cloud 
cover (%) Quality Path/ 

row 

1989 10/04/1989 Landsat 4-
5 TM 0 9 23/31 

1999 09/22/1999 Landsat7 
ETM+ 0 9 23/31 

2010 09/12/2010 Landsat 4-
5 TM 0 9 23/31 

Ancillary data needed for this study, particularly, for 
ground truthing, referencing and modeling. These includes; 
Chicago Land Green Infrastructure-Land Use 2004, 4-
meter spatial resolution IKONOS multispectral satellite 
imagery and land cover maps of the Illinois counties of the 
Chicago area. The Chicago Land Green Infrastructure was 
obtained from Green Mapping Organization (GMO) and 
the IKONOS imagery was obtained from the Chicago 
State University (CSU) GIS Lab were used as a references 
to get some ideas about land cover types in the study area. 
On the other hand, the land cover maps of the Illinois 
counties of Chicago Wilderness for 1985, and 1997 were 
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used for identifying information classes and training a 
supervised image classifier. Additionally, Google Earth 
2010 was also used to assist training signature selection 
and get some ideas about the recent land cover of the 
study area. Main roads and water bodies’ data prepared by 
Chicago Metropolitan Agency for Planning (CMAP), 
were used for Land Use Land Cover (LU/LC) modeling. 

2.3. Methods 

2.3.1. Image Processing 
Image preprocessing needed for this study include 

image stacking, band selection and combination. Image 
stacking is the process converting a multiple band Landsat 
images into a multispectral image [20]. While image 
stacking, both thermal band 6 and panchromatic band 
were excluded because their overall contribution to this 
study is infinitesimal. The false color composite in which 
bands 4, 3 and 2 are displayed in the red, green and blue, 
respectively, was used for this study to enhance distinction 
among different LU/LC types [7]. In this band 
combination, urban areas appear in cyan blue, vegetation 
in shades of red, water bodies from dark blue to black, 
soils with no vegetation from white (sand, salt) to brown. 

2.3.2. Image Classification 
This research focuses mainly on the urban sprawl and 

its effect on the agricultural lands and natural areas. 
Therefore, it was determined to limit the classification 
results as five information classes, namely; built up land, 
agricultural land, water, forest and woodlands, and a 
category referred to as “others” (See Table 3). The digital 
classifications were done using the maximum likelihood 
image classifier (Equation 1 &2). The maximum 
likelihood decision rule is assign pixel to the classes based 
on probability. The probability density function for a class 
(Wi) is given by: 
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Where: 
P = probability density function 
Wi = LULC class (e.g., Urban land) 
X = brightness values 
µi = estimated mean of all values in LULC class (e.g., 
Urban land) training class 
σi

2 = estimated variance of all the measurements in this 
class 

For multiple done, n-dimensional multivariate normal 
density function equation is given as: 
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Where: 
iV  = the determinant of the covariance matrix, 

1
iV −  = the inverse of covariance matrix 

(X – Mi)T = transpose of the vector (X – Mi) 
Mi = mean vector 
V = covariance matrix 

This classifier is the most common classification 
algorithms and successful [21,22,23] as it involves 
training of the information classes. The classifier is trained 
using information (training) classes obtained directly from 
the ground truth thereby facilitating a classification on the 
basis of a likelihood probability of pixel’s belongingness 
to each training class [20]. 

Table 3. The LU/LC classification scheme 

LU/LC Class Descriptions 

1. Urban land  

All man-made features (residential, 
commercial and industrial areas, settlements 
and transportation infrastructure and mixed 
urban) 

2. Agricultural land Includes cropland and other types of 
agricultural practices 

3. Water Waterbodies such as (lakes,rivers, streams 
and canals)  

4. Forest and woodlands Deciduous and evergreen forest , and 
transitional woodland 

5. Others 

Includes mixed pixel containing Built up 
mixed with Agricultural land, Urban mixed 
with Nature (i.e., Forests and Woodlands or 
Waterbodies mixed with Built up. and other 
land cover types 

Note: Classes description was adopted from U.S Geological survey 
LU/LC Classification system for use with remote sensor data 

The training sites were selected with the help of 
reference and ancillary data such as Google Earth 2010, 
Chicago Land Green Infrastructure-Land use 2004, 
IKONOS and the land cover maps of the Illinois counties 
of Chicago. Training polygons were digitized for each 
training site, and spectral signature were developed for 
LU/LC category, to derive statistics that categorizes pixels. 
Several methods were used for evaluating separability of 
the training signatures. Only training sites with separable 
signatures were used to perform the classification. At least 
30 training sites per class and a total of 360 sites were 
selected for supervised image classification and 
subsequent accuracy assessment. 

Following image classification, isolated incidences of 
individual group of pixel(s) independent from its 
neighbors were identified. Post-classification smoothing 
was conducted to smooth the image and eliminate such 
isolated incidences. This was done with a 3x3 
MAJOROTY filter, which removed the isolated pixels 
based on the most popular values within the filter window. 
Smoothed images were then clipped into the shape and 
size of the study area. 

2.3.3. Accuracy Assessments 
Accuracy assessments of the classified maps (1989, 

1999 and 2010) were evaluated using the error matrix. The 
error matrix evaluated accuracy using parameters such as 
overall accuracy, producer's accuracy, user's accuracy and 
the Kappa Index of agreement. The overall accuracy 
specifies the total correctly classified pixels and is 
determined by dividing the total number of correctly 
classified pixels by the total number of pixels in the error 
matrix. The producer’s accuracy indicates the probability 
of a reference pixel being correctly classified; while the 
user's accuracy indicates the probability that a pixel 
classified on a map actually represents that category on 
the ground. On the other, the Kappa index measures the 
agreement between classification map and reference data 
[24]. All accuracy parameters have index values between 
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0 and 1, where 0 symbolize poor and 1 strong classification 
accuracy/agreement. 

2.3.4. Change Detection 
A number of remote sensing system and environmental 

considerations were made in selecting the images 
appropriate for the change detection analysis. For instance, 
with regards to the system considerations, attempts were 
made to acquire data on anniversary or near anniversary 
dates. Accordingly, images near or at the anniversary 
dates i.e., 10/04/1989, 09/26/1999, and 09/12/2010 were 
acquired. Additionally, attempts were made to select 
images with same spatial, spatial and radiometric 
resolutions. Other consideration included atmospheric 
conditions, soil moisture condition, and plant 
phonological cycle of the times when the images were 
recorded. The images selected were recorded when the 
atmosphere was cloud free (0%), the landscape has similar 
moisture condition and stages of vegetation development.  

Many change detection algorithms are available (e.g., 
[7,11,15,22,23,25,26]. These are post classification change 
detection, image algebra-based change detection i.e., 
image differencing, image ratioing, multi date composite 
image [25]. While image algebra-based change detection, 
particularly, image differencing can only provide change 
or non-change information, post classification technique 
can provide "from-to" change matrix [26]. Besides, post 
classification technique is the most common change 
detection method, and has successfully employed for 
detecting and monitoring Urban sprawl and changes 
occurring in urban areas [7,11,15,22,23]. Therefore, post 
classification method was used in the change panel of the 
Land Change Modeler (LCM) in IDRISI to determine 
changes LU/LC between 1989 and 1999, 1999 and 2010, 
and 1989 and 2010. The Land change panel also created a 
variety of change graphs and maps, which help to 
understand prevailing land cover gains, losses and change 
"from-to" map. The spatiotemporal changes of Urban 
sprawl was also evaluated by creating the LU/LC maps for 
the three time periods (1989, 1999, and 2010) on maps 
reclassified into built up and non-built up land. 

2.3.5. Urban Growth Prediction 
Different models have been developed for the purpose 

of modeling urban growth and land use changes. These are 
Markov Chain, Geomod, CA-Markov, and Land Change 
Modeler (LCM). The LCM is also referred as Multi-Layer 
Perceptron (MLP) - Markov in some cases because it 
represents combination of Markov and MLP techniques 
and was selected to predict the urban growth in the study 
area. The method is found as most suitable for the 
simulation of the complex relationships in the LU/LC 
change in recent studies [7,13,14,15]. The LCM, which 
predicts future LU/LC based on the historical change of 
LU/LC maps [17], consisted of three major steps. These 
are Change Analysis (discussed in the previous section), 
Transition Potential Modeling and Change Prediction. The 
schematic of LCM is indicated in Figure 2. 

The modeling requires two LU/LC maps for different 
dates 1989 and 2010 as project parameters. The LU/LC 
maps were used as references to understand the nature of 
change in the study area, and for establishing samples of 
transitions that should be modeled. The transition 
potential map is a product of Multi-Layer Perception 

(MLP) neural network algorithm that was selected owing 
to its ability to optimize non-linear relationships. The 
MLP running statistics are shown in Table 4. All 
combinations of driver variables were tested to assess 
relative influence of each. The MLP gave a good accuracy 
rate (i.e., 79.15%) using distance from Built-up land and 
likelihood driver variables, again high Cramer’s V values 
does not guarantee a strong performance since it cannot 
account for the mathematical requirements of the 
modeling approach used and the complexity of the 
relationship, therefore many factors was excluded to reach 
higher accuracy in MLP. The minimum number of cells 
that transitioned from 1989 to 2010 was 361045, therefore 
this number represent the maximum sample size. Ideally 
the RMS error curve should be smooth and descent. In this 
study RMS error curve; both the training RMS and testing 
RMS curves showed decrease in the RMS errors which 
indicated increase in accuracy rate (i.e., 79.15%). 

 
Figure 2. LULC Modeling using Land Change Modeler (LCM) 

Table 4. Statistics of MLP Neural Network 
Maximum Sample Size 361045 

Iterations 10000 

Training RMS .2373 

Testing RMS .2386 

Accuracy Rate 79.15% 

MLP is an artificial neural network model that maps 
sets of input data onto a set of appropriate outputs. It is 
composed of an input layer, output layer, and hidden 
layers, which are between input and output layer (Figure 
3). MLP works in such a way that activity of the input 
units represents the raw information that is fed into the 
network. The behavior of the output units depends on the 
activity of the hidden units and the weights between the 
hidden and output units. The activity of each hidden unit 
is determined by the activities of the input units and the 
weights on the connections between the input and the 
hidden units 
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Figure 3. Architecture of the Multi-layer perceptron network applied to 
land use change modelling 

The transition potential are maps of the land that would 
potentially be transformed. It is developed by the 
following steps: First the sub-models that are going to be 
used for computing the transition potential were identified 
using Transition Sub-Model Status panel. The panel lists 
all transitions that exist between the two land cover maps. 
Three sub models were considered, namely; built up land 
gain from agricultural land, built up land gain from 
"others", and "others" gain from agricultural land since the 
focus of the study is mainly modeling changes in built up 
land. In the next step, variables that explain the transitions 
were developed. A quick test of the potential explanatory 
power of a variable was done using Cramer’s V test. 
Cramer’s test has values between 0 – 1, where 0 signify 
lower explanatory power (association) and 1 imply a 
strong explanatory power [17]. With Satisfactory 
Cramer’s Value, the driving and model variables were put 
together to model each transition. The transition potential 
maps, the Markov Chain modeler and the transition 
probability matrix were used to predict the 2010 LU/LC 
map. The method, which combines MLP and Markov 
chain was found to be efficient for predicting future 
LU/LC change [7,13,15]. 

2.3.6. Model validation 

Model validation is conducted to determine the quality 
of the predicted LU/LC map [17]. After using the LU/LC 
maps for 1989 and 1999 to simulate the year the LU/LC in 
2010, a cross-tabulation analysis was employed to 
compare the simulated image of 2010 with the base 
LU/LC map of 2010 produced using supervised 
classification, for validation. The analysis produces a 
tabular matrix, which depicts the proportion of the total 
number of pixels that are correctly predicted as in the 
classified 2010 map. 

3. Results and Discussions 

3.1. LU/LC Classification and Accuracy 
Assessment 

The results of LU/LC classifications of Landsat images 
of 1989, 1999 and 2010 are shown in Figure 4. 
Accordingly, five major LULC types were identified in 
the northern Chicago counties. These are built up areas, 

agricultural lands, waterbodies, forest and woodlands and 
a category referred to as “others”. The others category is 
consisted of mixed pixel containing Built up mixed with 
Agricultural land, Urban mixed with Nature (i.e., Forests 
and Woodlands or Waterbodies mixed with Built up. 

 
Figure 4. LU/LC maps obtained from classification of the 1989, 1999, 
and 2010 Landsat Images 

The accuracy of the classified maps are shown in Table 5. 
The overall accuracy of the map for 2010 image is 100%, 
whereas the accuracies for 1989 and 1999 were 99%. On 
the other hand, the Kappa statistics, which evaluated the 
overall agreement between a classification map and 
reference data and is a more accurate measure than the 
overall accuracy measure as pointed out earlier, 
demonstrated an strong agreement (i.e., 99%) between the 
classification maps and the reference data. Producer's and 
User's accuracy were found consistently good ranging 
from (79%-100%) for all categories in each study year, 
except for "Others" category. The user's accuracies for 
"Others" ranges 31 – 80% and it was low (31%) for 1999 
image. The possible reason for the lower producer 
accuracy of this category was the characteristic of this 
class, which are mixture of other land cover type and 
mixed pixel with varying ranges of different dominant 
land cover types. However, higher values of overall 
accuracy parameters and KIA indicate that the 
classification results are good enough for further analysis. 

In 1989, agriculture was dominated the LU/LC types of 
the study area, accounting for approximately 56.2% of the 
landscape. This is followed by built up and “others” areas, 
which was stretched over 1468.8 sq miles (i.e., 21%) and 
688.7 sq miles (i.e., 10%); respectively (Table 6). The 
proportion of waterbodies, and Forest and woodlands were 
the least accounting for only 7% and 5.3% of the 
landscape, respectively. In 1999, while still agriculture 
dominated the LU/LC types of the region (i.e., 50.3%) the 
proportion has decline from what it was in 1989. 
Conversely, the proportion of built up lands increased to 
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29.5% whereas Waterbodies, Forest and Woodlands and 
other categories, relatively, remained stable. In 2010, built 
up and agricultural land were about the same i.e., 39.1% 
and 41.7%, respectively. 

Table 5. Summary of error matrixes for the classified images of 1989, 
1999 and 2010. 
Year Category Producer's User's KIA per Class 

1989 

Built up 1 .79 .79 
Agriculture 0.98 1 1 

Water 1 1 1 
Forest & Woodland 0.99 1 1 

Others 0.97 .62 0.62 
Overall accuracy .99 

Overall KIA 0.98 

1999 

Built up 1 0.93 .93 
Agriculture 0.94 1 1 

Water 1 1 1 
Forest & Woodland 1 1 1 

Others 0.89 0.31 .31 
Overall accuracy .99 

Overall KIA .98 

2010 

Built up 1 .83 .83 
Agriculture 0.99 1 1 

Water 1 1 1 
Forest & Woodland 0.99 1 1 

Others 0.98 0.88 .88 
Overall accuracy 1 

Overall KIA 1 
The higher proportion of Agricultural land in 

Northeastern Illinois is a characteristic of typical Midwest 
landscape of United States [27]). According the study [27], 
Agriculture is a single dominant LU/LC type of the 
Midwest covering approximately 49% of the landscape. 
Additionally, the result is consistent with the patterns of 
LU/LC map of the second largest metro city of the 
Midwest i.e., Twin cities, MN [22]. According to the 
study [22], the seven-county Twin Cities Metropolitan 
Area is consisted of Agriculture (41.1%), Urban (31.9%); 
Forest (21%) and Waterbodies (6.2%)corroborating our 
finding. 

Table 6. LU/LC Area in square miles and percentage for each 
LU/LC category, during the 1989, 1999, and 2010 

LU/LC Category 
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Built up land 1,468.8 21.4 2,022.5 29.5 2676.8 39.1 

Agricultural land 3,853.5 56.2 3,446.2 50.3 2859.4 41.7 

Water 481.2 7.0 500.0 7.3 485.9 7.1 
Forest and 
Woodlands 361.7 5.3 439.6 6.4 366.9 5.4 

Others 688.7 10.0 445.5 6.5 464.8 6.8 
Total 6,853.8 6,853.8 6,853.8 

3.2. Change Detection Analysis. 
Table 7 contains results of quantitative analysis of 

LU/LC changes of Northwestern Chicago between 1989 
and 2010. The change analysis (Table 3) revealed that 
from 1989 to 1999, various LU/LC changes have occurred. 

For instance, the built up lands gained about 553.7 square 
miles (i.e., 37.7%), while the agricultural areas lost about 
407 square miles(i.e., -10.6%). The category of “Others" 
class also declined by 35.3 %. Waterbodies, forest and 
woodlands increased by 3.9% and 21.5% respectively. 
Similarly, in the second decade, between 1999 and 2010, 
built up lands registered the main change followed by 
agricultural areas. The built up lands gained 
approximately 654.3 square miles (i.e., 32.4%), whereas 
agricultural lands lost about 586.7 square miles (i.e., -
17.0%). Forests and wood land decreased by 16.5%. 
Water and "others" didn't show a significant change 
during that time period. In summary, between 1989 and 
2010 the urban areas expanded by about 1,208. 1 square 
miles (i.e., 82.2%), while agricultural lands and “others” 
class were reduced by 994.1 square miles and 223.9; 
respectively. Waterbodies, forest and woodlands stayed 
relatively unchanged. 

Table 7. LU/LC change in square miles and percentage during the 
three time periods 

LU/LC 

1989 -1999 1999-2010 1989-2010 
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Built up land 553.7 37.7 654.3 32.4 1,208.1 82.2 
Agricultural 

land -407.3 -10.6 -586.7 -17.0 -994.1 -25.8 

Water 18.9 3.9 -14.2 -2.8 4.7 1.0 
Forest and 
Woodlands 77.9 21.5 -72.7 -16.5 5.2 1.4 

Others -243.2 -35.3 19.3 4.3 -223.9 -32.5 

The result of LU/LC changes of Northwestern 
Chicagoland corroborates with prior study in Chicago 
Metro area [18]. The study [18] evaluated the LU/LC 
change within the greater eight counties of Chicago 
metropolitan area between 1972 and 1997, found that the 
region has experienced a dramatic land cover change. 
Accordingly, a significant increase of the built up area and 
decrease in the agricultural land and other natural areas 
were reported, indicating socio-economic drivers have not 
changed over time. Additionally, Land cover classification 
and change analysis of the Twin Cities (Minnesota) 
Metropolitan Area produced identical results [22]. The 
multi-temporal Landsat data between 1986 and 2002 
showed urbanization increased from 23.7% to 32.8% of 
the total area, while agriculture decreased from 49.6% to 
40.5%; substantiating similar kinds of change in the 
neighboring metropolitan city. 

Table 8. Total Population, and population growth in the study 
between 1990-2000 and 2000-2010. 

Year 
Population Growth (%) 

1990 2000 2010 1990-2000 2000-2010 

Total 7,507,113 8,376,601 8,700,058 11.58 3.86 

Table 8 compared observed increase in built up areas 
and population growth in metro areas. Accordingly, the 
population of Chicago metro area has increased by 11.6% 
between 1990 and 2000 built up land increased by 37.7% 
during the same period, which is 3 times lower than the 
rate of the urban growth. Similarly, from 2000 to 2010 the 
population increased by 4%, while the built up land grew 
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by 32.4%. Similar observation [12] was after implementing a 
dynamic landscape simulation approach to investigate 
human induced LU/LC changes in Chicago metropolitan 
area revealed population increase by 4% from 1970 to 
1990, while the urban land area was increased by 47% 
during the same period. 

 
Figure 5. Transition from all classes to built up land between 1989-2010 

While the dual population and built up area increase 
depict a logical causal relation, the disparity in their rates 
are a reminder of perhaps a changing behavior of the 
urban population. Urban residents are increasing leaving 
densely populated city center to suburban areas in search 
of larger space. For example, the population of Cook 
reduced by 3.39% between 2000 and 2010 (Table 1) 
confirming people movement from city center into the 
suburban counties. Therefore, increase in urban land 
expansion in Chicago metro area is not only due to 
population increase but also because of increasing demand 
for larger residential area. Additionally, more and more 
people needed a larger residential space in the latter 
decade than the former, indicating that the trend is not a 
matter of the past but present.  

 
Figure 6. Contribution of other land classes to built up land (in square 
miles), from 1989 to 2010, computed in Land Change Modeler (LCM) 

Figure 5 and Figure 6 are the analytical result of LU/LC 
types contributed to increase in built up area between 
1989 and 2010. Accordingly, the dominant contributions 
to built up area increase was agricultural land followed by 
"others" category. Approximately 895.83 and 270.34 
square miles of agricultural lands and “other” class were 
converted into built up land, respectively. Forests and 
woodlands contributions were very low and water bodies 
hasn’t changed into built up land. This finding is 

corroborated by the reports [12,18]. The reports found 
Agriculture as a major land cover type converted into 
urban, indicating its unique fragility to human footprint in 
Chicago area. Surprisingly, wetland ecosystem, though 
found sensitive in many parts of world, is stable in 
northwestern Chicago land. 

3.3. Spatiotemporal Changes of Urbanization 
Figure 7 presents result Spatiotemporal Change of 

Urban areas in 1989, 1999 and 2010. According to the 
result, the highest Urban Sprawl was experienced in the 
suburban areas where there are concentrations of 
agricultural lands and natural preserves. It shows the 
urban growth spilling beyond the boundary of the existing 
built up land into the rural areas of Kane, McHenry, and 
Will counties. The largest urban land expasion was in Will 
County, to the south, where the populations also increased 
by 89.6% between 1990 and 2010 (see Table 1). When it 
comes to the far suburbs, the fastest growth of built up 
area was in southern Kendall County. In General, the 
proportion of the built up land was only 21.4 % (i.e., 
1,468.8 square miles) until 1989, and non-built up land 
(other landscape categories) amounts to 78.5% (i.e., 
5,385.1 square miles). In 1999 and 2010 the built up area 
grew to 29.5% and 39.1%, respectively, indicating the 
trend of urban sprawl (Table 9). 

 
Figure 7. Spatiotemporal Change of Urban areas in 1989, 1999 and 2010 

Table 9. Proportion of built up areas in Chicago metropolitan area 
in 1989, 1999 and 2010 
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Built up 1,468.8 21.4 2,022.5 29.5 2,676.8 39.1 

Non Built up 5,385.1 78.5 4,831.3 70.5 4,177.0 60.9 

Total 6,853.8 100 6,853.8 100 6,853.8 100 

3.4. LU/LC Modeling and Validation 
Model validation is an important step in case of 

predictive change modeling [17]. According to the cross-
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tabulation analysis conducted for model validation, the 
overall agreement between the classified and simulated 
2010 map was found 77%. This is a strong agreement 
compared with studies such as [15] which was found 61% 
and [13] which was found 72%. Because the model passed 
the validation test, it was used to predict LU/LC of 
northeastern Illinois. Accordingly, Figure 8 is the 
prediction results of projected LU/LC of 2020 and 2030.  

 
Figure 8. Future projection LU/LC map of northeastern Illinois for year 
2020 and 2030 

According to the prediction result, in 2020 built up land 
will dominate the LU/LC types of the study area 
accounting for approximately 46.5% of the landscape 
followed by agricultural land and “others” areas, which 
will be about 2367.6 sq miles (i.e., 34.5%) and 449.4 sq 
miles (i.e., 6.6%); respectively. Therefore, in the current 
trajectory continues, 2020 would mark the year when the 
proportion of Built up area would effectively surpass 
Agricultural land in Northeastern Illinois. In 2030, the 
proportion of built up land will increase further to amount 
to half of the study area accounting 6,853.8 square miles, 
whereas agricultural lands will decrease to 29.8% and 
“Others" category is predicted to decrease by 6.1% (See 
Table 10). 

Table 10. Expected LU/LC in square miles and percentage of 
northeastern Illinois for 2020 and 2030 

LU/LC Category 
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Built up land 3184.0 46.5 3538.5 51.6 

Agricultural land 2367.6 34.5 2041.9 29.8 

Water 481.2 7.0 500.0 7.3 

Forest and Woodlands 361.7 5.3 439.6 6.4 

Others 449.4 6.6 420.6 6.1 

Total 6853.8 6853.8 

It is also revealed that between 2010 and 2020, the built 
up land will gain approximately 507.2 square miles (i.e., 
19%), while the agricultural land is predicted to lose 492.8 
square miles (See Table 11). During that same time period 
"Others" will decline by 3.3%. The predicted map of 2030 
indicate that from 2010 until 2030, The LU/LC will 
continue the change in the same manner, i.e., greater loss 
of agricultural lands. Besides, Northeastern Illinois 
Planning Commission (NIPC) (now the Chicago 
Metropolitan Agency for Planning (CMAP) has predicted 
25% population growth for the Chicago metropolitan 

region between1990 and 2020, compared with only 4% 
between 1970 and 1990 [4]. Therefore, considering that 
the prediction is, in part, made based on the information of 
the past slower population growth rate, this predicted, the 
current accelerated growth rate will likely lead to a huge 
increase of urbanization. Even with the increase in the 
population growth rate, the built up land will increase at 
faster rate the population growth. 

Table 11. Comparison of the expected LU/LC map of 2010 and 
predicted LU/LC of 2020 and 2030 

LU/LC 
category 

2010-2020 2010-2030 
Decrease/ 
increase 

(Sq. miles) 

Change 
(%) 

Decrease/ increase 
(Sq. miles) 

Change 
(%) 

Built up Land 507.2 19.0% 861.7 32.2% 
Agricultural 

Land -491.8 -17.2% -817.5 -28.6% 

Others -15.3 -3.3% -44.2 -9.5% 

4. Conclusion 
This study has attempted to investigate the urban 

growth in a large portion of northeastern Illinois region. 
Remote sensing, GIS and simulation models were 
employed for analyzing and modeling LU/LC change, the 
quantitative analysis of the LU/LC maps provided a strong 
evidence that during twenty one years (from 1989 to 2010) 
the area has experienced an extensive urban growth, 
associated with a huge loss of the valuable agricultural 
lands and a decline in the urban open spaces and other 
landscape categories. This tremendous growth was mainly 
taking place in suburb areas, and at times in an 
unstructured and fragmented fashion raising concerns over 
the present city’s urban planning. For example, during the 
study period, the urbanized or built up land area increased 
by more than 80%, which is tremendous. There is also 
imbalance between urban and population growth as the 
population was increased by only 15%, suggesting that 
major driving factors could possibly be the 
decentralization of population and metropolitan functions, 
and the increasing demand for larger residential area.  

The results of the LU/LC prediction indicated that in 
the next two decades the growth trend is also likely to 
keep increasing. Accordingly, more population would 
shift from the city to the suburbs causes losses of 
agricultural lands and some open spaces corroborating the 
prediction made by NIPC indicating concerted efforts by 
all stakeholders to effect sustainable urban development of 
northeastern Illinois. In general, this study has 
demonstrated the capabilities of remote sensing, GIS and 
LCM simulation model for analyzing, monitoring and 
predicting urban growth thereby providing a useful 
information for urban planners and decision makers about 
the past LU/LC change and an early measure of a serious 
problem in Chicago metropolitan region and quantifying 
the impact of the suburban sprawl on the agricultural lands 
and natural areas. However, these results can further 
improved should the future works deploy a high resolution 
images, and the multi temporal ground truth. It can also 
improve should the complex decisions of land 
development system modelled with other important 
drivers such as but not limited to socio-economic 
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conditions, and distances from important places like 
railway station. 
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