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Abstract Support Vector Machine (SVM) optimization technique is rapidly gaining attractiveness in the area of 
geophysics, mining and geomechanics. This paper discusses the importance of SVM for prediction of longitudinal 
pressure-wave velocity and its advantages over other conventional methods of computing. Pressure-wave 
measurement, an indicator of peak particle velocity (PPV) during blasting in a mine is an important parameter to be 
determined to minimize the damage caused by ground vibrations. A number of previous researchers have tried to use 
different empirical methods to predict pressure-wave. But these empirical methods are less versatile in their 
applications. The fracture propagation is not only influenced by the physico-mechanical parameters of rock, but they 
are also affected by the dynamic wave velocity of rock (e.g. compressional wave velocity). Wave velocity 
measurements have wide applications in the different fields of geophysics. A Support Vector Machine (SVM) model 
is designed to predict the pressure wave velocity of different rocks. To avoid the blindness in man-made choices of 
parameters of SVM, we use the chaos optimization algorithm to find the optimal parameters which can help the 
model to enhance the learning efficiency and capability of prediction. The fracture roughness coefficient and 
physico-mechanical properties are taken as input parameters and pressure wave velocity as output parameters. The 
mean absolute percentage error for the pressure wave velocity (PrV) predicted value has been found to be the least 
(0.258%) as compared to values obtained by Multivariate Regression Analysis (MVRA), Artificial Neural Network 
(ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) and generalization capability of the SVM model is 
found to be very useful for such type of geophysical problems. 
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1. Introduction 
Use of seismic techniques in geotechnical engineering 

is increasing day by day to evaluate long-term stability of 
rock structure. The dynamic behavior of rocks are largely 
characterized and determined by various techniques. 
Attempt are made to examine rockbolt enforcement, 
blasting efficiency of rock by the seismic velocity 
measurement, estimation of fracture zone developed 
around the underground opening, determination of degree 
of rock weathering and characterization of fractured rock 
mass (Price et.al., 1970; Young et.al., 1985; Hudson et.al., 
1980; Karpuz and Pasamehmetoglu, 1997; Boadu, 1997). 

Many researchers attempted to study the relation 
between the rock properties and pressure wave velocity 
(PrV) and tried to establish relation to the static rock 
properties. Rock type, density, hardness, porosity, strength 
properties, temperature, grain size and shape, confining 
pressure, etc. are the most important factors influencing 
the pressure-wave velocity. The rocks have been subjected 
throughout their history to a wide range of diagnostic 

processes which affect their petro physical and pressure 
wave properties. Apart from these, fracture properties 
(roughness, filling material, dip, strike, etc.) also influence 
the compressive wave velocity in rock. The relation of the 
seismic velocities in rocks of the western region of the 
central Asia to density and other physical parameters is 
discussed by Yudborovsky and Vilenskaya (1962). 
Aveline et al. (1964) have found lower velocity in 
weathered granite, as compared to fresh one. Berezkin and 
Mikhaylov (1964) have revealed linear correlation 
between density and elastic wave velocities in rocks of the 
central and eastern region of the Russian platform. 

Measurement of wave velocities in rocks as well as in 
many other materials is available in the literature 
(Goodman, 1989; Kern, 1990). Prediction of peak particle 
velocity, an indicator of pressure-wave helps in designing 
structures near blasting region of surface mines and other 
applications related to blasting. Long-term stability of 
rock structures can only be achieved when pressure wave 
velocity of the rock mass is fully known. Earthquake 
advance warning is possible by detecting the non-
destructive pressure-wave that travel more quickly 
through the Earth's crust than do the destructive secondary 
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and Rayleigh waves. Determination of pressure-wave 
enables the development of earthquake resistant buildings. 

Due to the fast development of soft computing tools, it 
is now possible to solve number of complex problems 
with greater degree of accuracy and authenticity. The soft 
computing tools like artificial neural network, fuzzy logic, 
genetic algorithm, etc. have potential to provide rapid, 
precise and accurate prediction of ground vibration over 
well-known predictors (Verma 2009, Sinha et al., 2010, 
Singh et. al, 2004 a, b). ANN approached by many 
researcher to predict the ground vibration using various 
parameters and comparing the result from the available 
predictors justify the superiority of soft computing (Singh 
and Verma, 2005, Khandelwal and Singh 2006).  

Support Vector Machine algorithm is also an 
appropriate tool to be used for prediction of ground 
vibration. SVM can provide solutions for highly intricate 
problems and perform well approximating solutions to all 
types of optimization problems. These machines (SVMs) 
are a set of related supervised learning methods used for 
classification and regression. In simple words, given a set 
of training examples, each marked as belonging to one of 
two categories, SVM training algorithm builds a model 
that predicts whether a new example falls into one 
category or the other. 

In the present work, a SVM model is designed to 
predict pressure-wave velocity in rock mass taking 
physico-mechanical properties and fracture roughness 
coefficient as an input parameter. This paper is mainly 
focused not only on how to construct the model, but also 
on how to use this modeling framework to deduce the 
results and assess the applicability and reliability of the 
model. 

2. Data Set 
Present investigation aims at predicting the elastic 

property of the rocks (pressure-wave velocity), taking 
physico-mechanical properties and fracture roughness 

coefficient as inputs. The other parameters (density, 
hardness, etc.) also influence the pressure wave velocity in 
rock, but it is uneconomical to obtain all the parameters 
because they are expensive and time-consuming. On the 
other hand, some of the parameters are strongly correlated 
(Hogstrom, 1994). Hence, it is not imperative to use all 
the variables as input parameters. 

In the present investigation SVM model is designed 
using the 150 data set of three different rock types (Marble, 
Travertine and Granite), each from different rock class. 
Hence, following parameters have been taken as input 
parameters for the network as shown in Table 1. 

Table 1. Input parameters and their range 
Type of parameter Name Range 

Physico-mechanical 
properties: 

Compressive strength (UCS in 
MPa) 

120–
250 

 Density (d in gm/cc) 2.4–3.0 
 Hardness (h) 5.0–7.0 
 Porosity (p in %) 0.1-1.5 
 Absorption (ab in %) 0.3–0.4 

Joint property Fracture roughness coefficient 
(frc) 0.1-4.0 

Thus, all six parameters are taken as input parameters 
for the network. Pressure velocity is taken as an output 
parameter and its range is given in Table 2. Table 3 shows 
the types and class of rocks used in the study. 

Table 2. Output parameters and their range 
Out parameter Range 

Pressure Velocity(PrV in cm/s) 400-700 

Table 3. Rock data used for the SVM model 
 Rock type Rock class 

1 Granite Igneous 
2 Travertine Sedimentary 
3 Marble Metamorphic 

3. Multivariate Regression Analysis 
PrV (cm/s) = 393.3000 + 133.28122h -524.4707p + 

1077.5929 ab + 0.0062UCS-228.2424 d +45.4384frc  

 

Figure 1. Residual plot for predicted pressure velocity (cm/sec) 

A residual plot is a graph that shows the residuals on 
the vertical axis and the independent variable on the 
horizontal axis. The points in the residual plot are 
randomly dispersed around the horizontal axis which 
indicates that a linear regression model is appropriate for 
the data (Figure 1). 

4. Artificial Neural Network 
ANN is able to solve difficult problems in a way that 

resembles human intelligence. Unique about neural 
networks is their ability to learn by example. Traditional 
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artificial intelligence (AI) solutions rely on symbolic 
processing of the data, and approach that requires a prior 
human knowledge about the problem. In addition, neural 
network’s techniques have an advantage over statistical 
methods of data classification because they are 
distributions-free and require not a prior knowledge about 
the statistical distributions of the classes in the data 
sources in order to classify them. Unlike these two 
approaches, ANN is able to solve problems without any a 
prior assumptions. As long as enough data is available, a 
neural network will extract any regularity and form a 
solution. 

4.1. Training a Network 
During learning of the network, data are processed 

through the network, until it reaches the output layer 
(forward pass). In this layer, the output is compared to the 
measured values (the true output). The difference or error 
between both is processed back through the network 
(backward pass), updating the individual weights of the 
connections and the biases of the individual PEs (Richard 
and Lippmann, 1991; Monjezi and Dehghani, 2008). The 
input and output data are mostly represented as vectors 
called training pairs. The input and output neurons used in the 
network with 4 hidden layers have been shown in Figure 2. 

 

Figure 2. Three layer feed forward back propagation neural network 

5. Adaptive Neuro Fuzzy Inference 
System  

The most popular solution of the fuzzy networks is 
based on the so-called fuzzy inference system, fuzzy if - 
then rules and fuzzy reasoning. Such fuzzy inference 
system implements a nonlinear mapping from the input 
space to output space. This mapping is accomplished by a 
number of fuzzy if- then rules, each of which describes the 

local behavior of the mapping, like it is done in radial 
basis function networks. The antecedent of the rule 
defines the fuzzy region in the input space, while the 
consequent specifies the output of the fuzzy region. There 
are different solutions of fuzzy inference systems. The 
most known belongs to the Mamdani fuzzy model. 
Tsukamoto fuzzy model and Takagi–Sugeno–Kang (TSK) 
model (Takagi and Sugeno, 1985, Chiu, 1994). In the 
present work we have considered only TSK model. The 
network has a multi-layer form as shown in Figure 3.  

 

Figure 3. ANFIS structure for the PR model, Neuro-fuzzy, with six input parameters and 14 rules. Layer-1 represents inputs, layer-2 input membership 
function, later-3 rules, layer-4 output membership function, layer-5 weighted sum output and layer-6 output 
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5.1. Network Architecture for Neuro-fuzzy 
Model 

Table 4. Parameters used for prediction using Neuro fuzzy model 
S. No. Parameter Value 

1 Number of inputs 6 

2 Number Membership functions for each input 14 

3 Type of membership functions for each input Gaussian 

4 No. of rules 14 

5 Type of membership functions for each output Linear 

6 No. of output membership function 14 

7 No. of training epochs 30 

8 No. of training datasets 100 

9 No. of testing datasets 26 

10 Number of checking data sets 10 

11 Error goals 0 

12 Error achieved 0.1659 

Out of 150 data sets available 114 sets were taken for 
training, 26 data sets for testing and 10 data sets were 
taken for checking the model. The membership function 
of each input is tuned using hybrid method consisting of 
back propagation for the parameters. The computations of 
the membership function parameters are facilitated by a 
gradient vector, which provides a measure of how well the 
FIS (fuzzy inference system) system is modeling the 
input/output data. For a given set of parameter the 
numbers of nodes in the training data were found to be 
205. Number of linear parameters and non-linear 

parameters were found to be 98 and 168 respectively. The 
hypothesized initial number of membership functions and 
the type used for each input were 10 and Gaussian 
respectively. Now, the hypothesized FIS model is trained 
to emulate the training data by modifying the membership 
function parameters according to the chosen error criterion. 
A suitable configuration has to be chosen for the best 
performance of the network. Goal for the error was set to 
be zero and number of training epochs was given 30. 
Table 4 shows final configuration for the FIS after the 
training (Goal was reached after 30 epochs) was complete.  

The clustering method used in this paper is Subtractive 
clustering. The purpose of using clustering method is to 
identify natural groupings of data from a large set of data 
set to produce a concise representation of a system’s 
behavior. ANFIS (adaptive neuro-fuzzy inference system) 
structure of the model, with four input parameters, one 
output parameters and five rules are shown in Figure 3. 

For checking, 10 data sets have been used in this model 
apart from 26 testing data sets as validation data set 
because checking data set is used to control the potential 
for the model over fitting the data. When checking data is 
presented to ANFIS as well as training data, the FIS 
model is selected to have parameter associated with the 
minimum checking data model error. The basic idea 
behind using the training data set for model validation. In 
principle, the model error for the checking data set tends 
to decrease as the training takes place to the point that 
over fitting begins, and the model error for the checking 
data suddenly increases. Also using the checking data set 
with ANFIS automatically sets the FIS parameters to be 
those associated with the minimum checking error. 

 

Figure 4. Performance graph of the neuro-fuzzy model 
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Figure 5. Correlation between predicted and observed value of pressure wave velocity 
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Figure 4 shows the performance graph of the model. It 
can be seen from the graph that the checking error is 
reducing continuously as the training of the model is 
progressing, this indicates that the model is not over 
fitting the training data set. Figure 5 shows the correlation 
results between observed and predicted values of pressure 
wave velocity. The high coefficient of correlation sets 
indicates the excellent generalization capability of the 
fuzzy inference system and it can be said that the result 
obtained are accurate and highly encouraging. 

6. Support Vector Machine 
Kernel-based techniques (such as support vector 

machines, Bayes point machines, kernel principal 
component analysis, and Gaussian processes) represent a 
major development in machine learning algorithms. 
Support vector machines (SVM) are a group of supervised 
learning methods that can be applied to classification or 
regression. 

These machines represent an extension to nonlinear 
models of the generalized portrait algorithm developed by 
Vapnik and Lerner (1963). The SVM algorithm is based 
on the statistical learning theory and the Vapnik–
Chervonenkis (VC) dimension. The statistical learning 
theory, which describes the properties of learning 
machines that allow them to give reliable predictions, was 
reviewed by Vapnik (1995). In the current formulation, 

the SVM algorithm was developed at AT&T Bell 
Laboratories by Vapnik and Chervonenkis (1991) 

A Support Vector Machine (SVM) performs 
classification by constructing an N-dimensional hyper-
plane that optimally separates the data into two categories. 
Support Vector Machine (SVM) models are a close cousin 
to classical multilayer perceptron neural networks. Using a 
kernel function, SVM’s are an alternative training method 
for polynomial, radial basis function and multilayer 
perceptron classifiers in which the weights of the network 
are found by solving a quadratic programming problem 
with linear constraints, rather than by solving a non-
convex, unconstrained minimization problem as in 
standard neural network training. 

In the parlance of SVM, a predictor variable is called an 
attribute, and a transformed attribute that is used to define 
the hyper plane is called a feature. The task of choosing 
the most suitable representation is known as feature 
selection. A set of features that describe one case (i.e., a 
row of predictor values) is called a vector. So the goal of 
SVM modeling is to find the optimal hyper plane that 
separates clusters of vector in such a way that cases with 
one category of the target variable are on one side of the 
plane and cases with the other category are on the other 
size of the plane. The vectors near the hyper plane are the 
support vectors. Figure 6 shows an overview of the SVM 
process. 

 

Figure 6. Two dimensional SVM model 
Before considering N-dimensional hyper planes, let’s 

look at a simple 2-dimensional example. Assume we wish 
to perform a classification, and our data has a categorical 
target variable with two categories. Also, assume that 
there are two predictor variables with continuous values. 
One category of the target variable is represented by 
rectangles while the other category is represented by ovals. 

6.1. SVM and Kernel Parameters 
Training an SVM finds the large margin hyper plane 

and has another set of parameters called hyper parameters: 
The soft margin constant, C, and any parameters the 

kernel function may depend on (width of a Gaussian 
kernel or degree of a polynomial kernel). 

Hyper parameters with the soft-margin constant called 
‘C’, whose role is illustrated in Figure 7. A smaller value 
of C (right) allows to ignore points close to the boundary, 
and increases the margin. The decision boundary between 
negative examples (red circles) and positive examples 
(blue crosses) is shown as a thick line. The lighter lines 
are on the margin (discriminant value equal to -1 or +1). 
The grayscale level represents the value of the 
discriminant function, dark for low values and a light 
shade for high values. 
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For a large value of C a large penalty is assigned to 
errors/margin errors. This is seen in the left panel of 
Figure 7, where the two points closest to the hyper plane 
affects its orientation, resulting in a hyper plane that 

comes close to several other data point. When C is 
decreased (right panel of the figure), those points become 
margin errors; the hyper plane’s orientation is changed, 
providing a much larger margin for the rest of the data. 

 

Figure 7. The effect of the soft-margin constant, C, on the decision boundary 

 

Figure 8. The effect of the inverse-width parameter of the Gaussian kernel ( γ ) for a fixed value of the soft-margin constant. For small values of γ  
(upper left) the decision boundary is nearly linear. As γ  increases the flexibility of the decision boundary increases. Large values of γ  lead to over 
fitting (bottom) 
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The parameter of the Gaussian kernel determines the 
flexibility of the resulting SVM in fitting the data. If this 
complexity parameter is too large, over fitting will occur 
(bottom panels in Figure 8). 

6.2. Model development for SVM 
SVM model developed here uses important parameters 

on which pressure wave velocity mainly depends. The 
parameters which are taken into account are Compressive 
strength (UCS in MPa), Density (d in gm/cc), Hardness 
(h), Porosity (p in %), Absorption (ab in %) and Fracture 
roughness coefficient (frc). Out of 150 data sets available 
114 sets were taken for SVM training, 26 data sets for 
SVM testing and 10 data sets were taken for SVM 
checking the model to see its prediction capability. The 
architecture of SVM established is given in Table 5. 

The RBF kernel non-linearly maps samples into a 
higher dimensional space, so it can handle nonlinear 
relationships between target categories and predictor 
attributes; a linear basis function cannot do this. The RBF 
function has fewer parameters to tune than a polynomial 
kernel, and the RBF kernel has less numerical difficulties.  

 2: ( * | | )Radialbasisfunction exp gamma u v− −  

Stopping criteria of 0.001 has been chosen that is a 
tolerance factor that controls when the iterative 
optimization process stops. 

A SVM model is formed by selecting a hyper plane that 
partitions the data with maximum margin between the 
feature vectors that define points near overlap. Shrinking 
heuristic method has been chosen which improves 
performance by ignoring points that are far from 
overlapping and which are unlikely to influence the choice 
of the optimal separating hyper plane. Essentially, 
shrinking eliminates outlying vectors from consideration. 
Shrinking heuristics significantly speed up performance 
when the training data set is large. 

The accuracy of an SVM model is largely dependent on 
the selection of the model parameters such as C, Gamma, 
P, etc. Two methods for finding optimal parameter values, 
a grid search and a pattern search has been used. A grid 
search tries values of each parameter across the specified 
search range using geometric steps. The range used in this 
case is between 1 to10. A pattern search (also known as a 
“compass search” or a “line search”) starts at the center of 
the search range and makes trial steps in each direction for 
each parameter. The search range in this paper is 10 and a 

tolerance of 1.0e-8 has been chosen. If the fit of the model 
improves, the search center moves to the new point and 
the process is repeated. If no improvement is found, the 
step size is reduced and the search is tried again. The 
pattern search stops when the search step size is reduced 
to a specified tolerance. In this paper, the grid search is 
performed first. Once the grid search finished, a pattern 
search has been performed over a narrow search range 
surrounding the best point found by the grid search. The 
grid search may find a region near the global optimum 
point and the pattern search will then find the global 
optimum by starting in the right region. The optimized 
values of C, gamma and P obtained after two searches has 
been shown in Table 6. 

An Epsilon-SVR analysis uses three obtained 
parameters (C, Gamma and P) so a grid search with 10 
intervals required 10*10*10 = 1000 model evaluations 
(table4). Since cross-validation is used for this model 
evaluation, the number of actual SVM calculations will be 
further multiplied by the number of cross-validation folds 
(typically 4 to 10).  

Table 5. Parameters of SVM model 
Type of SVM model Epsilon-SVR 
SVM kernel function Radial Basis Function (RBF) 
Search criterion Minimize total error 
Number of points evaluated 
during search 1200 

Sopping criteria  0.0005 
Minimum error found by search 0.00000005 

Table 6. Optimized Parameter values 
C 12794.40 
Gamma 0.848515 
P 0.000504 

Table 7. Analysis of variance for validation data 
Coefficient of variation (CV) 0.000053 
Normalized mean square error (NMSE)  0.000034 
Correlation between actual and predicted 0.997 
Maximum error 0.0087543 
MSE (Mean Squared Error) 0.0000076 
MAE (Mean Absolute Error) 0.000145 

Normalized mean square error (NMSE) was found to be 
0.000034 while correlation of coefficient between actual 
and predicted values was found to be 0.997 as shown in 
Table 7. 26 out of 150 support vectors obtained are given 
in Table 8 which also shows the percentage error of 
predicted PrV for 26 testing support vectors. 

 

Figure 9. Coefficient of Correlation between observed PrV and predicted PrV using SVM 
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Table 8. Support vectors for the model and predicted percentage error  

Sl. 
No. Hardness Porosity 

(%) 
Absorption 

(%) 

Compressive 
Strength 

(Mpa) 

Density 
(g/cc) 

Fracture 
roughness 
coefficient 

Observed 
PrV-wave 

(cm/s) 

Predicted 
PrV-wave 

(cm/s) 

Error 
(%) 

1 6.700 0.630 0.245 222.00 2.842 1.438 652.344 653.389 -0.16019 
2 6.680 0.640 0.255 219.00 2.835 1.507 650 649.972 0.004308 
3 6.630 0.670 0.268 218.00 2.828 1.556 647.656 648.771 -0.17216 
4 6.580 0.680 0.279 211.00 2.821 1.585 644.531 643.560 0.150652 
5 6.060 0.890 0.36 178.00 2.756 2.222 599.219 602.783 -0.59477 
6 6.040 0.910 0.367 177.00 2.751 2.3 595.313 599.556 -0.71273 
7 6.010 0.940 0.376 174.00 2.743 2.34 591.406 592.575 -0.19766 
8 5.320 1.250 0.444 135.00 2.655 3.455 467.188 468.945 -0.37608 
9 5.270 1.270 0.448 131.00 2.649 3.553 456.25 455.752 0.109151 

10 5.230 1.350 0.458 125.00 2.641 3.651 442.969 442.504 0.104973 
11 6.930 0.430 0.215 244.00 2.889 0.236 671.094 673.428 -0.34779 
12 6.880 0.460 0.219 240.00 2.882 0.452 668.75 669.745 -0.14879 
13 6.830 0.490 0.226 238.00 2.874 0.804 665.625 666.561 -0.14062 
14 6.810 0.520 0.229 236.00 2.862 0.911 663.281 664.434 -0.17383 
15 6.580 0.680 0.279 211.00 2.821 1.585 644.531 645.617 -0.16849 
16 6.540 0.710 0.289 208.00 2.814 1.605 642.188 642.804 -0.09592 
17 6.500 0.730 0.315 206.00 2.804 1.646 639.844 641.877 -0.31773 
18 6.120 0.870 0.354 185.00 2.766 2.144 607.813 609.538 -0.2838 
19 6.060 0.890 0.36 178.00 2.756 2.222 599.219 601.527 -0.38517 
20 6.040 0.910 0.367 177.00 2.751 2.3 595.313 598.285 -0.49923 
21 5.450 1.190 0.429 141.00 2.679 3.182 503.906 503.783 0.024409 
22 5.410 1.220 0.439 139.00 2.672 3.268 493.75 494.246 -0.10046 
23 5.380 1.240 0.441 138.00 2.669 3.357 480.469 482.653 -0.45456 
24 5.320 1.250 0.444 135.00 2.655 3.455 467.188 468.445 -0.26906 
25 5.143 0.683 0.256 225.86 2.51 0.775 453.299 454.823 -0.3362 
26 5.089 0.716 0.261 223.61 2.53 0.913 451.269 454.652 -0.74966 

Figure 9 shows that the correlation coefficient obtained 
for SVM. The r2 value obtained is 0.9998, which is very 
high and it shows the strong predictive capability of SVM 
over other conventional methods as shown in Table 9. The 
relationship obtained between observed and predicted 
values is,  

 (SVM) (observed)PrV  1.0006PrV  1.0469= +  

It clearly shows that PrV values predicted using SVM 
are in good agreement to the observed values. 

Table 9. Percentage of error of pressure velocity by different approaches 

Observed 
pressure-wave 

(cm/s) 

Predicted 
pressure-wave 

using SVM 
(cm/s) 

% Error by 
SVM 

Predicted 
pressure-wave 
using ANFIS 

(cm/s) 

% Error by 
ANFIS 

Predicted 
pressure-wave 

using ANN 
(cm/s) 

% Error 
by ANN 

Predicted 
pressure-wave 
using MVRA 

(cm/s) 

% Error 
by MVRA 

652.344 653.389 -0.160 654.345 -0.3067 655.320 -0.456 658.234 -0.902 
650 649.972 0.004 650.436 -0.067 652.537 -0.390 654.265 -0.656 

647.656 648.771 -0.172 648.175 -0.080 648.245 -0.090 649.165 -0.232 
644.531 643.560 0.150 644.345 0.0288 646.398 -0.289 645.637 -0.171 
599.219 602.783 -0.594 603.452 -0.706 604.285 -0.845 608.231 -1.503 
595.313 599.556 -0.712 600.394 -0.853 602.451 -1.199 601.983 -1.120 
591.406 592.575 -0.197 593.503 -0.354 594.293 -0.488 592.784 -0.233 
467.188 468.945 -0.376 469.310 -0.454 471.437 -0.909 473.424 -1.334 
456.25 455.752 0.109 456.420 -0.037 457.427 -0.257 458.432 -0.478 

442.969 442.504 0.104 443.876 -0.204 446.986 -0.906 447.654 -1.057 

7. Conclusion 
Because of structural complexity of rock mass and its 

consequent influence on the pressure wave velocity, it 
often shows highly nonlinear characteristics, which cannot 
be described by the classical mathematical methods. 
Based on the support vector machine (SVM) theory, this 
paper predicts the pressure wave velocity which proved 
more effective and accurate than the conventional MVRA, 
ANN and ANFIS. The mean absolute percentage of errors 
obtained using SVM, ANFIS, ANN and MVRA are 0.258, 
0.309, 0.583 and 0.769 respectively. Considering the 
complexity between inputs and outputs the result obtained 
are highly encouraging and proves the superiority of SVM 
over ANN, ANFIS and MVRA. Using SVM as a tool, the 
correct prediction of pressure wave velocity can be made 
which can save the surface structures in the vicinity of 
blasting site from possible damage. This tool can be used 

for optimization of PrV with greater degree of confidence 
due to its robustness and unbiased prediction capability. 
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