
Journal of Geosciences and Geomatics, 2024, Vol. 12, No. 1, 12-23 
Available online at http://pubs.sciepub.com/jgg/12/1/3 
Published by Science and Education Publishing 
DOI:10.12691/jgg-12-1-3 

Mapping Land use/Land Cover Changes Caused  
by Mining Activities from 2018 to 2022 Using  

Sentinel-2 Imagery in Bétaré-Oya (East-Cameroon) 

P. Azinwi Tamfuh1,2,*, E. Ndah Musi1, S.C. Nguemhe Fils3, K.I. Ateh1, A.B. Aye1,  
E. Tata1, L. E. Mamdem4, B. Kenzong2, G. D. Kouankap Nono5, Dieudonné Bitom2 

1Department of Mining and Mineral Engineering, National Higher Polytechnic Institute,  
University of Bamenda, P. O. Box 39 Bambili, Cameroon 

2Department of Soil Science, Faculty of Agronomy and Agricultural Sciences,  
University of Dschang, P. O. Box 222, Dschang, Cameroon 

3Institute of Geological and Mining Research, P.O. Box 4110, Yaoundé, Cameroon 
4Department of Earth Sciences, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon 

5Department of Geology, Higher Teacher Training College, P.O. Box 20, Bamenda, Cameroon 
*Corresponding author:  

Received February 20, 2024; Revised March 22, 2024; Accepted March 29, 2024  

Abstract  Artisanal mining is often associated  with land use and land cover (LULC) changes like deforestation, 
open pits, health hazards, heavy metals contamination of land, land degradation, dust and noise pollution, soil 
instability, climate change, etc. This research aims to monitor LULC changes between 2018 and 2022 in East 
Cameroon due to artisanal gold mining activities, assessing the dynamics between LULC change types and the 
extent of change with time. Sentinel-2 images for 2018, 2020, and 2022 were used to examine LULC patterns at per-
pixel scale with a post-classification change detection technique based on a cross matrix of changes. Supervised 
classification was carried using maximum likelihood algorithm of five LULC classes (bare land, vegetation, water 
bodies, settlements and mining activities). The results revealed spatio-temporal change patterns that have taken place 
in Betare-Oya. It was observed that the area under mining activities has increased from 2042.32 ha in 2018 to 
3197.03 in 2020 and experienced a sharp decline to 2008.72 ha in 2022 probably as a result of the COVID-19 
pandemic; with an overall percentage change from 3.95 % to 6.18 % and 3.89 % for 2018, 2020 and 2022, 
respectively. Also, results showed the change in vegetation from 21718.36 ha in 2018 to 16189.78 ha in 2020. In 
2022, vegetation slightly increased to 16563.88 ha as a result of the fluctuation in mining activities, showing an 
inverse interaction between mining activities and vegetation. This study emphasizes the usefulness of Sentinel-2 data 
and highlights the data processing methods for long-term monitoring of the impacts of artisanal mining activities on 
the environment. This research will add to already existing database on LULC changes in Cameroon as a result of 
mining activities. 
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1. Introduction 

Exploration and exploitation of mineral resources is one 
of the common activities through which the environment 
suffers damages; through excavation for trenching, and 
reworking of sediments for the search of alluvial minerals 
through artisanal activities [1]. Mining activities are 
reported to have detrimental effects on land [2]. 
Overburden removal of leads to significant deforestation 
and arable land as more land is exposed to erosion [3]. 
Water bodies are also affected [4].  This land degradation 

causes alteration in ecological and economic functions [1]. 
Land degradation is one of the most common 
consequences of mining activites most often leading 
deforestation, open pits, health hazards, heavy metals 
contamination of land and water, dust and noise pollution 
and soil instability [5]. Other consequences of artisanal 
gold mining operations are floods, sedimentation and 
landscape modifications [6]. Miners often abandon the 
previous mining area without any land restoration. 
Increase in land conversion due to mining operations is a 
threat to agricultural sustainability [3,7]. Information on 
real extent of land degradation due to mining operations is 
vital for policy conservation [8]. However, this type of 
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data is rarely available for large areas [9]. It is thus 
essential to map the extent and severity of soil degradation 
due to gold mining activities [5]. One of the best approach 
to land mapping is spatial remote sensing as it is faster, 
cost-effective, can easily cover large surface areas and the 
uncertainty level of the maps generated can be determined 
with high precision. Various versions of GIS and remote 
sensing approaches exist like geostatistics, multi-criteria 
GIS, Analytical Hierarchy Process (AHP), Analytical 
Network Process (ANP), Simple Additive Method (SAM), 
Weighted Linear Combination (WLC), Multi-Criteria 
Decision Analysis (MCDA) and Unclear Logic [9]. 
Remote sensing has been reported as the most effective, 
fastest and least expensive way to evaluate land 
degradation [10]. Sentinel-2 is ESA's medium spatial 
resolution super-spectral instrument aimed at ensuring 
data continuity for global land surface monitoring of 
Landsat and SPOT and it enables to monitor vegetation 
after mine closure [10]. Normalized difference vegetation 
index (NDVI) is the most suitable index to monitor 
changes in vegetation cover as it is least affected by 
topographic factors and is indicative of the plant 
photosynthetic activity [11]. Reliable temporal data on the 
impact of mining activities are required to aid in mine 
reclamation and management efforts [12]. Land 
degradation as a result of artisanal mining in the eastern 
part of Cameroon has reported [5,11,12,13,14]. Since land 
degradation is a continuous process as well as mining 
activities, it is therefore necessary to continually study the 
changes over time in gold-based mining district such as 
the eastern region as well as make endeavours to narrow 
this research to small size artisanal mining communities 
such as Bétaré Oya. The world depends on agriculture for 
food and sustenance. Agricultural success entails the 

availability of fertile soils or land [7]. Land degradation 
reduces the fertility of land and such aspects include 
erosion, deforestation, mining and settlement. Mining 
activities are also increasing the impact of land 
degradation. In areas where mining activities are 
prominent such as in Betare-Oya, there is an influx of 
people leading to increasing settlement in the area. In as 
much as land degradation can be evaluated manually, 
regular monitoring and preparing LULC maps by 
conventional methods is time consuming, expensive, 
labour intensive and carrying out ground surveys may also 
be difficult in some areas due to terrain characteristics [1]. 
Thus, a more rapid but accurate method for this evaluation 
is needed. Rapidness comes in as a result of the changing 
times and with an advance in technological development, 
it is necessary that every aspect of mining be incorporated 
in technology for rapid results which are accurate and can 
maximize time. This work aims to evaluate the extent of 
land degradation in Betare-Oya as a result of mining 
activities between 2018 and 2022 using Geographic 
Information System (GIS) and remote sensing 
technologies precisely Sentinel-2 Imagery. The key 
objectives of this waork are (1) to produce maps of spatial 
distribution and expansion of land use patterns; (2) 
identify changes in land with time due to mining activities; 
and (3) finally to establish the link between mining 
activities and land degradation in the studied area. The 
results obtained will enable stakeholders to predict the 
extent and rate of land degradation over time as a result of 
mining activities with possible methods of rehabilitation 
and restoration of land due to land degradation proposed 
as per the results obtained, to counteract the effects of 
mining activities in this area.  

 

Figure 1. Location map of Betare-Oya in East Cameroon 
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2. Materials and Methods 

2.1. Study Site  
Betare-Oya is located in the East Region of Cameroon 

in the Lom and Djerem Division, between latitude 
14°1'0.643"E and longitude 5°42'48.587"N (Figure 1). 
Betare-Oya is located 180 km from Bertoua with a surface 
area of 12,000 km2 [16]. The wet season is warm, 
oppressive, and overcast and the dry season is hot and 
mostly cloudy [16,17]. It is characterized by an average 
annual temperature of 31.59oC and an average annual 
precipitation of 2198.78 mm. It has four seasons: a long 
rainy season (mid-August to mid-November), a long dry 
season (mid-November to February), a short rainy season 
(March to May) and a short dry season (July and mid-
August). The vegetation in Betare-Oya portrays the 
presence of an ecotone, marking the transition between the 
humid equatorial forest of the Centre, South and East 
regions of Cameroon with the shrubby savannah of 
Adamawa. The vegetation cover alternates between 
islands of forest galleries, particularly along the water 
courses and a savannah peri-forest dotted with relatively 
dense shrubs and in places of anthropogenic origin [17]. 
The hydrography Betare-Oya consists of very dense 
drainage pattern belonging to the Sanaga watershed. The 
main river is the Lom which is woven around an 
interesting network of rivers, some of which are the Mba 
and Mali Rivers, which pour into the Lom. The 
morphological conditions of this environment influence 
the hydrography. Almost all rivers flow in a north-south 
direction. It is along the line of these rivers that semi-
mechanized and artisanal gold mining is concentrated. The 
relief is relatively rugged characterised by dotted hills here 
and there. It is characterized by an altitudinal range 
between 658 m and 1072 m and an average altitude of 
about 834 m. The low lands fall within the Lom basin and 
the highlands surrounding these lowlands. Ferrallitic soils 
with red facies, ocher to yellow, thin and stony form the 
major soil type in the area. Hydromorphic soils are located 
in the lowlands. Betare-Oya area is part of the 
Neoproterozoic (700 - 1100 Ma) volcano-sedimentary 
formations of Cameroon or schist belts referred to as the 
lower Lom series. These formations occur discordantly on 
the Pan-African basement made up of migmatites and 
granitic to ortho-gneissic and biotite rich rocks; they are 
confined to the NE-SW trending shear zones as part of the 
Central African and Cameroon shear zone system along 
which granitic plutons are common [18,19,20]. The 
municipality has an estimated population of around 
41,173 inhabitants spread over 59 villages. These villages 

are grouped into 3 sections: Laï, Yayoué and Bitom. The 
economic environment is organized around extractive 
activities (gold, sand and precious stones), agriculture and 
a little hunting. Indeed, Betare-Oya is the epicentre of 
mining in the East Region. This mining is also 
accompanied by logging. Far from the mining sites, 
subsistence family farming, fishing, crafts and small trade 
are deployed, the actors of which are closely dependent on 
mining activities. Finally, artisanal hunting is also highly 
developed [17]. 

2.2. Methods 

2.2.1. Presentation of Sentinel-2 
The main features of Sentinel-2 are compiled in Table 1. 

Sentinel-2 is a European wide-swath, high-resolution, 
multi-spectral (MS) imaging mission. The full mission 
specification of the twin satellites flying in the same orbit 
but phased at 180° is designed to give a high revisit 
frequency of 5 days at the Equator. It carries an optical 
instrument payload that samples 13 spectral bands: four 
bands at 10 m, six bands at 20 m and three bands at 60 m 
spatial resolution. The orbital swath width is 290 km. The 
twin satellites of SENTINEL-2 provide continuity of 
SPOT and LANDSAT-type image data, contribute to on-
going multispectral observations and benefit Copernicus 
services and applications such as land management, 
agriculture and forestry, disaster control, humanitarian 
relief operations, risk mapping and security concerns 
[21,22]. The Sentinel-2 mission offers an unprecedented 
combination of systematic global coverage of land 
surfaces, a high revisit of five days at the equator under 
the same viewing conditions, high spatial resolution (10, 
20 and 60 m depending on bands) and a wide field of view 
for multispectral observation from 13 bands in the Visible, 
Near infra-red and Shortwave infra-red part of the 
electromagnetic spectrum. The 13 spectral bands span 
from Visible and Near infra-red to Shortwave infra-red 
featuring: (1) four bands at 10 m: the classical blue (490 
m), green (560 m), red (655 m), near-infrared (842 m) 
bands dedicated to land applications; (2) six bands at 20 m: 
4 narrow bands in the vegetation red edge spectral domain 
(705 nm, 740 nm, 775 nm and 865 nm) and 2 SWIR bands 
(1610 nm and 21 nm) 90 dedicated to snow/ice/cloud 
detection and to vegetation moisture stress assessment; 
and (3) three bands at 60 m dedicated to atmospheric 
correction (443 nm for aerosols and 940 for water vapour) 
and to cirrus detection (1380 nm). The obit is sun 
synchronous at 78 km altitude (14 + 3/10 revolutions per 
day) with a 10:30 a.m. descending mode. This local time 
was selected as the best compromise between minimizing 
cloud cover and ensuring suitable sun illumination [23]. 

Table 1. Sentinel 4 Bands, wavelength and resolution [21] 

Sentinel-
2 bands Characteristic 

Sentinel-2A Sentinel-2B Spatial resolution 
(m) Central 

wavelength (nm) 
Bandwidth 

(nm) 
Central wavelength 

(nm) Bandwidth (nm) 

1 Coastal aerosol 442.7 21 442.2 21 60 
2 Blue 492.4 66 492.1 66 10 
3 Green 559.8 36 559.0 36 10 
4 Red 664.6 31 664.9 31 10 
5 Vegetation red edge 704.1 15 703.8 16 20 

 

https://en.wikipedia.org/wiki/Red_edge
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Sentinel-
2 bands Characteristic 

Sentinel-2A Sentinel-2B Spatial resolution 
(m) Central 

wavelength (nm) 
Bandwidth 

(nm) 
Central wavelength 

(nm) Bandwidth (nm) 

6 Vegetation red edge 740.5 15 739.1 15 20 
7 Vegetation red edge 782.8 20 779.7 20 20 
8 NIR 832.8 106 832.9 106 10 

8A Narrow NIR 864.7 21 864.0 22 20 
9 Water vapour 945.1 20 943.2 21 60 

10 SWIR – Cirrus 1373.5 31 1376.9 30 60 
11 SWIR 1613.7 91 1610.4 94 20 
12 SWIR 2202.4 175 2185.7 185 20 

Table 2. Characteristics of downloaded images 

No Satellite Level of 
product Band used Resolution 

(m) Date of image Time Phenological cycle 

1 Sentinel-2B L1C 2,3,4,8,11,12 20 10/03/2018 11:27:45 Dry Season 
2 Sentinel-2B L1C 2,3,4,8,11,12 20 28/02/2020 09:35:09 Dry Season 
3 Sentinel-2B L1C 2,3,4,8,11,12 20 27/02/2022 09:35:33 Dry Season 

 

2.2.2. Mapping Process of LULC Patterns 
Image Download: Three Sentinel-2B images were 

downloaded from Earth explorer websites within the same 
period of the year for 3 different years; 2018, 2020 and 
2022 (Table 2). The chosen period was February 
(2020/2022) and March 2018. This choice was guided by 
the search for same good quality images with same 
phenological cycle, dry season and good images with no 
cloud cover. Sentinel-2 images with similar spatial 
resolution of 20 m enabled mapping of major LULC 
pattern (vegetation, bare land, water bodies, settlement 
and mine activity areas 

•  Data pre-processing:  Satellite image 
transformations involve manipulations of multiple 
band data in order to highlight particular properties 
or features of interest within the study area, in a 
better and more effective way than the original 
input images. 

•  Layer stacking: Layer Stacking was done for each 
of the 3 sentinel-2 images using Envi 5.7. Layer 
stacking involves combining multiple image layers 
(only layers with similar number of rows and 
number of columns) into a single image. Bands 
with different spatial resolution were resampled so 
as to the target resolution. All sentinel bands with 
spatial resolution of 10 m (that is band 2, 3, 8 and 
12) were resampled to 20 m. 

•  Geometric correction: It is necessary to correct 
geometric distortions caused by sensor-Earth 
geometry variations and conversion of the data to 
real geographic coordinates (longitudes and 
latitudes). When a number of images are to be used 
together, they are georeferenced.  

Image-to-image registration method was conducted to 
match the images so that they could be as comparable as 
possible in terms of geometric and radiometric qualities. 
All data were projected to the Universal Transverse 
Mercator projection system (zone 32N) and to World 
Geodetic System 84 datum in order to ensure consistency 
between datasets. 

•  Image Enhancement:  Image enhancement enables 
improve the appearance of the image to assist in 
visual interpretation and analysis. Enhancement 

functions included contrast, stretching to increase 
the tonal distinction between features, and spatial 
filtering to enhance or suppress specific spatial 
patterns in the image. Also, different colour 
composites (4-3-2, 8-4-3 and 4-8-3, 5-4-3 bands, for 
RGB channels) enabled to enhance the 
identification of features so as to select training set 
or classification signatures to be used. 

•  Selection of training set as defined by [24,25]: 
Sample polygons were created for each image 
(2018, 2020 and 2022) based on visual 
interpretation on the image to recognize the LULC 
feature classes. Every spectral analogous sub-area 
was demarcated with specified class name using a 
training set. 

•  Image Classification:  According to [26], image 
classification operations are used to digitally 
identify and classify pixels in the dataset. It is 
usually performed on multi-channel datasets (A) 
and this process assigns each pixel in an image to a 
particular class or theme (B) based on statistical 
characteristics of the pixel brightness values. After 
selecting the training sample/sets, they were 
satisfactorily reviewed. Supervised classification 
was done using the maximum likelihood 
classification classifier (MLC) which is the most 
common efficient statistical technique for 
evaluating the standard LULC classifications. By 
the classification, five LULC types were recognized 
(vegetation, bare land, water bodies, mining 
activities and settlement).  

•  Accuracy Assessment: The steps as proposed by 
[26,27] were used to assess the accuracy of the 
classification involving 150 random points. Thus, 
pixels to be sampled were randomly selected and 
selected points are transferred from the satellite 
image to Google earth pro thereby creating a kml 
file. Alternatively, Google Earth map can be used in 
ArcGIS as a base map. Sample points were 
interpreted on the Google earth, the interpretation is 
compared to the classification results and correctly 
classified pixels are tabulated. The overall accuracy 
of the classified image compares how each of the 
pixels is classified versus the definite land cover 
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conditions obtained from their corresponding 
ground truth data.  

Producer’s accuracy measures errors of omission, 
which is a measure of how well real-world land cover 
types can be classified. 

 
100

Product s Accuracy
Number of  Correctly Classified  Pixels in each Category x

Total  Number of  Reference Pixels in that  Category
=

′

(1) 
User’s accuracy measures errors of commission, which 

represents the likelihood of a classified pixel matching the 
land cover type of its corresponding real-world location. 

 
100

User s Accuracy
Number of  Correctly Classified  Pixels in each Category x
Number of  Correctly classified  Pixels in that  Category
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The interpretation of the Kappa coefficient is done 
according to [28] as compiled in Table 3. 

Table 3. Interpretation of agreement for kappa coefficient [28] 

Value of kappa-hat Interpretation of agreement 
0.8 ≤ k ≥ 1 Almost perfect agreement 

0.61 ≤ k ≥ 0.8 Substantial agreement 
0.41≤ k ≥ 0.60 Moderate agreement 

0.21 ≤ k ≥ 0.0.40 Fair agreement 
0.0 ≤ k ≥ 0.20 Slight agreement 

k < 0.0 Poor agreement 

2.2.3. Detection of change in LULC 
A post-classification enabled to quantify the overall 

land cover changes between 2018 and 2022 into categories 
as shown in Table 4.  

Table 4. LULC classes and their description 

No LULC 
Classes Description 

1 Bare Land 

Bare land refers to areas with no dominant 
vegetation cover on at least 90 % of the area. That is 
land surfaces with exposed soil as caused by human 
activities and/or natural causes. Areas exposed by 

activities such as farming and mining activities 
where the tops soil has been excavated leaving it 

void of vegetation are also considered here. 

2 Vegetation 

Vegetation is an assemblage of plant species and the 
ground cover they provide. It comprises of the nine 

Vegetation Formation Group types which are 
divided as Forest, Shrubland, Herbaceous 

vegetation, Desert, Swamp & Aquatic Vegetation, 
Alpine Tundra and Sparse Vegetation, Cultivated 

Vegetation, Urban Vegetation, and Non-Vegetated 
Area. 

3 Water 
Bodies 

Water Bodies means any natural or artificial inland 
body of water or expanded part of a water course, 

including lakes, ponds and reservoirs. It also 
encompasses standing ponds or dams made by man 
intentionally or unintentionally through activities 

such as artisanal mining 

4 Mining 
activities 

These are areas where artisanal mining of gold is 
being carried out either by individuals or artisanal 

companies. 

5 Settlement 
This is the place, typically one which is being 

inhabited by the human community, where people 
have established. 

In summary, the processing procedure begins with 
identifying real-world data as follows: extract images, 
identify the location of the study area, identify the 
composite band for satellite processing, identify construct 
layers form, and finally identify the classifiers. The 
statistical results and overall classification accuracy are 
calculated for each image for each satellite as shown in 
Figure 2. 

 
Figure 2. Flowchart of the method used 

 



 Journal of Geosciences and Geomatics 17 

 
Figure 3. LULC map 2018 of Betare-Oya 

 
Figure 4. LULC map for 2020 

3. Results and DISCussions 

3.1. Results  

3.1.1. Spatial Distribution and Expansion Maps of 
Land Use/Land Cover Patterns  

The spatial distribution and expansion analysis of the 
LULC for 2018 were gotten and presented as spatial map 
(Figure 3). An overall area of 51692.59 ha constituted the 

total of classification (Table 5). In 2018, Bare land, 
Mining activities, Settlement, Vegetation and Water 
Bodies occupied an area of 26481.66 ha (51.23 %), 
2042.32 ha (3.95 %), 105.57 ha (0.20 %), 21718.36 ha 
(42.01 %) and 1344.68 ha (2.60 %), respectively, with 
bare land occupying the majority of the area and 
settlement being the least. The spatial distribution and 
expansion analysis of the LULC for 2020 were gotten as 
presented below in the spatial map (Figure 3) and 
accompanying statistics (Table 5).  
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Table 5. LULC classes  

No Class Area (ha) Percentage (%) 
2018 

1 Bare Land 26481.66 51.23 
2 Mining activities 2042.32 3.95 
3 Settlement 105.57 0.20 
4 Vegetation 21718.37 42.01 
5 Water Bodies 1344.69 2.60 

2020 
1 Bare Land 29936.48 57.91 
2 Mining activities 3197.02 6.18 
3 Settlement 287.63 0.56 
4 Vegetation 16189.78 31.32 
5 Water Bodies 2081.68 4.03 

2022 
 
In 2020, Bare land, Mining activities, Settlement, 

Vegetation and Water Bodies occupied an area of 29936.48 
ha 3197.02 ha, 287.63 ha, 16189.78 ha and 2081.68 ha, 
respectively, with overall percentages of 51.97 %, 6.18 %, 
0.56 %, 31.01 % and 4.03 %, respectively, with bare land still 
occupying the largest portion and settlement occupying the 
least portion. As compared to 2018, it is observed that there is 
an increment in the percentage of most classes (mining 
activities from 3.95 to 6.18 %, bare land from 51.23 to 
57.91 %, Water bodies and 2020, followed by vegetation 
with an area of 16563.88 ha and percentage of 32.04 %, 
meanwhile water bodies, mining activities and settlement 
occupy an area of 1627.52 ha (3.15 %), 2008.72 ha (3.89 %) 
and 325.440 ha (0.63 %). Settlement remains the least 
represented of all LULC classes with 0.63 %.  

3.1.2. Change Detection to LULC Aspects in Betare-Oya 
The results the evolution of the different LULC classes 

in 2018, 2020 and 2022 (Figure 5, Figure 6 and Figure 7) 
enable to view actual areas of change. Across the statistics 

(Table 6), it is noticed that, progressively from one year to 
another, change takes place in that, a particular area 
occupied by a particular LULC class experiences change 
as proportions of it changes to any of the other LULC 
classes and as proportions of these other classes are being 
changed to that LULC class as well. 

In Table 6 and Figure 5, it is observed that from 2018 to 
2020, Bare land increased 26481.66 to 29936.48 ha, 
mining activities increased from 2042.32 to 3197.02 ha, 
settlement had a sharp increase from 105.56 to 287.63 ha, 
vegetation also decreased from 21718.36 to 16189.78 ha 
and water bodies increased from 1344.68 to 2081.68 ha. 

A difference classes from 2020 to 2022 (Table 6) reveals 
that bare land increased from 29936.48 to 31167.04 ha, 
meanwhile mining activities decrease from 3197.03 to 
2008.72 ha with a great part of changed area (2139.44 ha) 
being changed into bare land in 2022; settlement increases 
from 287.63 to 325.44 ha, vegetation also increases from 
16189.78 to 16563.88 ha and water bodies decline from 
2081.68 to 1627.52 ha with a major part of the changed area 
being converted to bare land in 2022. 

From the above statistics, overall change showing 
evolution from 2018 to 2022 is demonstrated as from 
2018 where bare land occupied an area of 26481.66 ha 
and in 2022, it changed to 31167.04 ha (Figure 8; Table 6). 
This sequence of change continues as mining activities 
decrease from 2042.32 ha in 2018 to 2008.72 ha in 2022, 
settlement sharply rising from 105.57 in 2018 to 325.44 ha 
in 2022, a reduction is demonstrated as vegetation reduces 
from 21718.36 in 2018 to 16563.88 and water bodies 
rising from 1344.69 in 2018 to 1627.52 ha in 2022. 

3.1.3. Accuracy Assessment 
The results obtained from the classification accuracy 

assessment computed to get the Kappa value for the 
classification are presented in Table 7 for the three 
classifications for 2018, 2020 and 2022. 

Table 6. LULC change statistics from 2018-2020, 2020-2022 and 2018 to 2022 

Classes Year Bare Land Mining activities Settlement Vegetation Water Bodies Grand Total 
Year  2020 

Bare Land 

2018 

22925.96 1988.26 76.47 925.551 563.25 26481.66 
Mining activities 894.94 580.79 111.22 84.19 364.69 2042.32 

Settlement 7.28 12.66 83.831 0.38 1.41 105.57 
Vegetation 5741.68 522.907 18.26 14915.08 515.68 21718.36 

Water Bodies 362.43 91.074 3.11 228.27 654.13 1344.68 
Grand Total 29936.48 3197.02 287.63 16189.78 2081.68 51692.59 

year 

2020 

2022 
Bare Land 26493.48 804.70 73.21 2251.68 304.359 29936.48 

Mining activities 2139.44 731.88 77.00 117.872 128.470 3197.03 
Settlement 71.130 53.587 162.48 3.836 1.984 287.63 
Vegetation 2105.86 33.16 5.79 13689.19 310.266 16189.78 

Water Bodies 692.88 208.59 6.53 311.59 877.049 2081.68 
Grand Total 31167.04 2008.72 325.44 16563.88 1627.52 51692.59 

year 

2018 

2022 
Bare Land 24259.30 1016.20 91.50 892.73 210.98 26481.66 

Mining activities 994.11 548.69 125.46 83.85 281.13 2042.32 
Settlement 7.96 16.93 79.26 0.14 1.26 105.57 
Vegetation 5871.72 152.99 24.89 15184.86 463.02 21718.36 

Water Bodies 364.18 96.32 3.51 208.01 663.06 1344.69 
Grand Total 31167.04 2008.72 325.44 16563.88 1627.52 51692.59 
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Figure 5. LULC map for 2022 

 
Figure 6. LULC change from 2018-2020 
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Figure 7. LULC change from 2020-2022 

 
Figure 8. LULC change from 2018-2022 
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Table 7. Accuracy assessment statistics 

Class Name User's Accuracy (%) Producer’s accuracy (%) 
2018 

Bare Land 72.41 80.77 
Vegetation 86.36 67.86 

Water Bodies 40 100 
Settlements 83.33 100 

Mining activities 50 33.33 
Overall accuracy 75% 

Kc 0.61 
2020 

 `  
Bare Land 76.9 85.7 
Vegetation 86.9 77.9 

Water Bodies 81.3 76.5 
Settlement 100 100 

Mining Activities 50 
Overall accuracy 80.23% 

Kc  0.69 
2022 

Bare Land 70.24 100.00 
Vegetation 100 70.59 

Water Bodies 85.71 85.71 
Settlement 75 100.00 

Mining Activities 80 80.00 
overall accuracy 82.63% 

Kc 0.79 

3.2. Discussion 

3.2.1. Analysis of spatial distribution and expansion of 
LULC in Betare‐ Oya 

Artisanal gold mining activities are known to have 
adverse and degrading effects on the land, its landscapes 
as well as environment (Tehna et al., 2015). This research 
has evaluated the changes on land due to artisanal gold 
mining activities in Betare-Oya using Sentinel-2 imagery. 
Sentinel-2 imagery as a continuation of the Landsat and 
spot (ESA, 2022) has been used to evaluate land cover 
changes (Farah et al., 2021). Spatial distribution maps 
were drawn from the classification of three Sentinel-2 
images where they displayed the clear distribution of land 
cover classes over the years. It is observed that vegetation 
in Betare-Oya is more prominent along river courses and 
valleys. Likewise, mining activities appear to be 
prominent along the Lom and other river courses 
suggesting that vegetation, water bodies and mining 
activities has an interactive relationship. Previously, the 
relationship between mining activities and vegetation had 
been shown where the growth in mining activities was at 
the expense of vegetation [5].  

It is also observed that mining continues to be dominant 
in the northern part of Betare-Oya [5], but has also 
emerged and spread to the west and south of Betare-Oya. 
Bare land is observed to be continually increasing across 
the years in Betare-Oya with a dominant percentage of 
51.23 %, 57.91 % and 60.29 %, for 2018, 2020 and 2022 
respectively, showing a trend of continuous increase in 
bare land over time. This observation is in agreement with 
the findings of [5]. This bare land can be affiliated to the 
season of choice when this research was being done. In 

the dry season when this work was done, there is less 
vegetation. Moreover, continuous increase in bare land 
can be attributed to the fact that more vegetation (forest) is 
being wiped out for mining activities and water bodies 
exhausted by such practices. During artisanal gold mining, 
miners cut the plants to get enough space to carry out their 
activity causing deforestation and more land is exposed. 
The increasing population with a percentage trend of 
0.20 %, 0.57 % and 0.63 % for 2018, 2020, and 2022, 
respectively will lead to increase agricultural land use 
(bush burning and fallowing) and increase bare land [29].  

An assessment of the changes on the five LULC classes 
from 2018 to 2020 shows an increase in bare land from 
26481.66 to 29936.48 ha which could be linked to the 
increase in mining activities from 2042.32 to 3197.02 ha 
as well as increase in settlement from 105.56 to 287.63 ha 
and a reduction in vegetation from 21718.36 to 16563.88 
ha.  Mining activities result in an increase in settlement 
and enhances forest destruction, hence reduction in 
vegetation [5,15]. There is also an increase in water bodies 
from 1344.68 to 2081.68ha and this can also be related to 
increase mining activities as more ponds are created 
during artisanal gold mining for panning. 

Further analyses of the changes in Betare-Oya with 
time from 2020 to 2022 showed an increase in bare land 
from 29936.48 to 31167.04 ha, an increase in settlement 
from 287.63 to 325.44 ha as well as vegetation increase 
from 16189.78 to 16563.88 ha. This increase in vegetation 
can be correlated to  a drop in mining activities. A decline 
in the mining activities also led to a reduction in water 
bodies from 2081.68 to 1627.52 ha.  

In as much as areas of mining activities keep changing 
to other classes with time, it continues to convert a greater 
portion of other classes to mining activities. The trend of 
change is characterized by bare land continuing to be the 
dominant class occupying most of the area with an 
increase from 26481.66 ha in 2018 to 31167.04 ha in 2022. 
Though mining activities experienced a drop in 2022, this 
did not alter the steady increase in bare land. This implies 
that despite the drop in its activities, the population 
increase (from 105.57 ha in 2018 to 325.44 ha in 2022) in 
Betare-Oya continues to carry out other activities such as 
farming which leads to increase in bare land and huge 
decrease in the vegetation (from 21718.36 ha in 2018 to 
16563.88 ha in 2022). The increase in area occupied by 
water from 1344.69 to 1627.52 ha within this time frame 
can be affiliated to both mining and the continuous 
increase of water from the Lom-Pangar dam. The decrease 
in the area occupied by mining activities from 2042.32 ha 
in 2018 to 2008.72 ha in 2022 can be linked to the 
COVID-19 outbreak which became prevalent in 
Cameroon in 2020. Its effect on various sectors in the sub-
Saharan African countries [29] such as the drop in the 
prices of minerals and others could have affected the 
artisanal gold mining sector in Cameroon. A challenge in 
this study arises from the confusion in differentiating 
settlement from mining activities due to their similarity in 
spectral reflectance.  

In general, mining activities have a cordial relationship 
with other LCLU classes in Betare-Oya. This is affirmed 
by [15] that mining activities attract population increase, 
hence increase in settlement. It also leads to deforestation,  
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thus influencing both bare land and vegetation, digging of 
pits and creation of ponds, divert water courses and block 
others river channels creating diverse effects on water 
bodies. Thus, mining activities have a degrading effect on 
the land in which it steadily occupies and this can be 
successfully assessed and affirmed using Sentinel-2 
satellite imagery. 

3.2.2. Accuracy Assessment 
The results of Kappa for 2018, 2020 and 2022 are in the 

order 0.61, 0.69 and 0.79 and the classification can be 
considered good according to [28,30]. Thus, the 
classification can be said to be in substantial agreement to 
ground truth. These results assert the fact that in the 
evaluation of land degradation in Betare-Oya, using 
spatial maps of the expansion and distribution of land 
cover classes can be successfully derived using sentinel-2 
imagery treated by supervised classification [30,31,32]. 

4. Conclusions 

This objective of this work was to map changes in land 
use patterns from from 2018 to 2012 caused by mining 
activities in Betare-Oya using Sentinel-2 images. 
Supervised classification by the maximum likelihood 
classifier method to derive the land use/land cover classes 
enabled to obtain five LULC classes. Th main results 
reveal an expansion of mining activities across the vicinity 
of Betare-Oya gold district, growth of mining activity over 
the territory in 2018 covering an area of 2042.32 ha and it 
quickly spread over the terrain in 2020 taking an overall 
area of 3197.03 ha followed by a sharp decline in 2022 
with a total area of 2008.72 ha. The influence of mining 
activities continues to take a turn on natural vegetation 
and enhancing the increase in bare land. The natural 
vegetation shows strong relationg with the alternation in 
mining activities with a continuous decrease from 2018 to 
2020 and an increase in 2022 due to a decline in mining 
activities. Mining activities and settlement have an impact 
on bare land as reflected by its continuous and sharp 
increase from 2018 to 2022, occupying the most of the 
terrain through the year. These findings highlights the 
strength of Sentinel-2 for long-term monitoring of land 
degradation caused by artisanal mining activities and 
provides results that are useful in the domain of 
environmental impact assessment of gold mining activities. 
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