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Abstract  The X-ray fluorescence (XRF) analysis of geological materials requires a robust analytical method 

because a large variety of elements to determine can be present in each sample and the concentration range of each 

one can be very large. In order to extract the maximum accuracy from the measured XRF intensities, a Fundamental 

Parameters (FP) method is proposed, but an adapted one to such an analytical context. The proposed adapted FP 

method consists of an appropriate sample preparation, a unique concentration calculation method and calibration 

procedure. It includes also a management of volatile components. 
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1. Introduction 

The quantitative analysis of any geological material is a 

real challenge. Indeed, it can be composed of almost all 

the elements of the periodic table, from Hydrogen to 

Uranium. The concentration of each element can be 

varying from a few ppms to 100%. Therefore, it takes a 

robust analytical method for obtaining the maximum 

accuracy from the measured XRF intensities when 

geological samples are analyzed. 

The first step for developing a robust analytical method 

is to select a way to prepare the samples. The sample 

preparation must supply specimens that are completely 

homogeneous and have a perfectly flat and polished 

surface. Most importantly, the sample preparation must be 

reproducible. Also, the XRF spectrometer must be as 

stable as possible. 

Then, the second important step is to select an 

algorithm for calculating sample compositions in 

association with an efficient calibration procedure. For the 

analysis of geological samples, the calibration procedure 

must be matrix independent and valid for the full 

analytical range, i.e. from 0 to 100%, of any element to 

determine (analyte). It must also include an efficient way 

to correct for instrumental drift in order to maintain the 

validity of the calibration data for a long period of time. 

The selected algorithm for calculating the analyte 

concentrations must be able to correct accurately matrix 

effects. Currently, the FP method is included with the 

software supplied with each instrument. In this case, be 

aware that the theoretical relative error introduced by the 

algorithm alone should be less than 0.1%. Be aware also 

that the FP method has to be adapted to the analysis of 

geological samples. The following characteristics should 

be present: 

1. Within a series of analytes, the user should be able to 

enter easily a mix of elements and oxides to be determined. 

2. The FP method should be able to calibrate for large 

concentration ranges, from a few ppms to 100%, of any 

analyte. 

3. The FP method should be able to take into account 

all the unmeasured components, for example, CO2, H2O, 

FeO, SO3, LOI, etc. 

4. For the analysis of fused discs or pressed pellets, the 

FP method should be able to take into account the ratio 

sample/flux or binder. 

5. For the analysis of fuse discs prepared with the 

original sample or the roasted one, the FP method should 

be able to calculate the sample composition with or 

without the knowledge of the LOI value. 

This paper presents such a robust and adapted FP 

method. 

2. Sample Preparation 

The first step for developing a robust analytical method 

is to select a way to prepare the samples. To obtain the 

maximum accuracy from the measured XRF intensities 

the specimens must: 

● Be perfectly homogeneous 

● Have a flat and polished surface 

● Have an infinite thickness 
● And mainly the preparation of the specimen must be 

reproducible. 

For applying all these characteristics to your specimens, 

it is recommended to prepare samples as fused discs. 
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3. KIM Equation 

The second step for developing a robust analytical 

method is to select an algorithm for calculating sample 

compositions. The most general and basic expression 

used in XRF analysis for converting measured net 

intensities into concentrations is given by 

 
i i i is

C K I M    (1) 

where 

Ci Concentration of the analyte i in the sample 

Ki Calibration factor 

Ii Measured net intensity of i 

Mis Factor correcting the effect of the specimen 

matrix composition on the intensity of i 

The K - I - M equation tells us that the calculated 

concentration of the analyte i (Ci) is equal to the product 

of three terms: first, the measured net intensity (Ii) 

corrected for matrix effects by the term Mis; and then, a 

calibration factor (Ki). 

Let us see how to calculate these 3 terms. 

3.1. Calculation of the Calibration Factor Ki 

For a pure analyte specimen, Ci = 1, Mis = 1 and 

equation (1) becomes 

 i (i)1 K I 1    (2) 

or 

 
i

(i)

1
K

I
  (3) 

where 

I(i): Intensity measured from a specimen containing the 

pure analyte i 

Equation (3) is telling us that the calibration factor is 

equal to the reciprocal of the net intensity of the pure 

analyte i. We will see how to use this feature in practice. 

If we bring equation (3) into equation (1), we get 

 i
i is

(i)

I
C M

I
   (4) 

If the relative intensity Ri is defined as being 

 i
i

(i)

I
R

I
  (5) 

This definition of the relative intensity Ri is very useful 

in quantitative XRF analysis. Indeed, if the measurement 

of intensities Ii and I(i) change with each spectrometer, 

their ratio Ri stays a constant, i.e. it is independent of the 

instrument. Ri is also independent of any instrumental drift 

with time. 
If we bring equation (5) into equation (4), this last one 

becomes 

 i i isC R M   (6) 

or 

 i
i

is

C
R

M
  (7) 

When the relative intensities are measured, they are 

independent of the spectrometer specifications. They can 

also be calculated by the Sherman equation [1] or any 

algorithm in agreement with this equation, as for example, 

the Fundamental Algorithm [2]. 

3.2. Calculation of the Net Intensity Ii 

In XRF analysis, the concentration is proportional to 

the net measured intensity. In this paper, I will not talk 

about instrumentation, operating conditions or how to 

measure X-ray fluorescence intensities. However, it is 

assumed that the measured intensities (Ii’) have been 

properly corrected for: 

● background (Ibkg), 

● line overlaps (fij) 

● and blank (IB) 

In geological samples, any analyte can be present at the 

level of trace or major. So, it is recommended to apply 

these corrections all the time. Translated in the 

mathematical language, it becomes: 

 '
i i bkg ij j BjI I I f I I     (8) 

3.2.1. Background Subtractions 

Because of the dilution, fused discs have a limited 

range of sample compositions and a limited degree of 

background curvature. In this case, the following method 

for background subtraction is proposed. By measuring on 

a blank specimen a background (bkg) free of peaks and 

the bkg beneath the analytical peak, the ratio between 

these two bkg measurements can be calculated. For any 

other specimen, the bkg values at the same positions will 

change, but their ratio will stay the same [3]. Thus, 

knowing the ratio value and by measuring the same bkg 

free of peaks on any other specimen, we can calculate the 

bkg beneath the analytical peak. Figure 1 shows an 

example of this type of background calculations. 

The advantage of this bkg subtraction method is that 

only one bkg free of peaks has to be measured for each 

analytical peak. This measurement can even be used for 

multiple analytical peaks as shown by Figure 1. Also, if 

necessary, the ratio value of a given analyte can be 

adjusted by making the intercept of its calibration line 

equal to zero. 

 

Figure 1. By measuring on a blank specimen a bkg free of peaks and the 

bkg at peak positions, we can calculate their ratios. For fused discs, these 

ratios can be used to calculate bkg at peak positions for any other specimen. 



3 Journal of Geosciences and Geomatics  

3.2.2. Spectral Interferences 

To determine the spectral interference of one element 

on another, prepare 4 specimens containing different 

concentrations of the interfering element j and no 

detectable amount of the overlapped element i. Measure 

the net intensity of the interfering element j and the 

contribution of this element in position of the overlapped 

element i. Plot both intensities. The slope is the 

interference factor fij. Figure 2 shows an example of the 

calculation of the factor fij in the case of Ba-Ti. 

 

Figure 2. Plot of the net intensity of the interfering element Ti versus the 

contribution of this one in position of the overlapped element Ba. The 

measurements have been done on 4 specimens containing different 

amount of the interfering element Ti, but no amount of the overlapped 

element Ba. The slope of the line is equal to the interference factor fBaTi 

3.3. Calculation of the Mis Factor Correcting 

for Matrix Effects 

The Mis factor corrects for the effect of the matrix 

composition of the specimen “s” on the measured XRF 

intensity of the analyte i. 

At the beginning of the seventies, many algorithms had 

been proposed to correct for matrix effects. But, which 

one to choose for the analysis of geological samples? 

All of them have been tested, including the FP method. 

All of them had their strengths and weaknesses, but most 

of the time, they were approximation designed for specific 

applications. None was valid for calculating large 

concentration ranges of any analyte, in any type of sample 

compositions. 

Therefore, there is a need for a new algorithm, as 

universal, as general as possible, able to calculate as 

accurately as possible the composition of any geological 

sample. In other words, is there a fundamental algorithm 

from which one can deduce all the other proposed 

algorithms [4]? Is there a fundamental algorithm which 

would be the synthesis of all the knowledge accumulated 

since the fifties when a specimen is bombarded by an X-

ray beam? 

For the analysis of geological samples, a more general, 

universal, or fundamental algorithm (FA) is then 

proposed [2], which is: 

 j ij j

i i

j ij j

1 C
C R

1 C
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where the influence coefficients ij and ij correct 

respectively for the absorption and enhancement effects 

of each matrix element j on the analyte i. 

All the mathematical details of this fundamental 

algorithm [4,5] will not be explained here, neither its 

powerful properties [4], but keep in mind that the FA has 

been deduced from the Sherman equation in an exact 

manner, without doing any approximation, taking care to 

respect rigorously the fundamental Sherman equation in 

every respect: algebraically, mathematically and 

physically [5]. 
The Mis factor can be calculated by the Sherman 

equation [1] or any other algorithm in agreement with this 

equation, as for example, the Fundamental Algorithm [2]. 

4. Calibration with a Single Standard 

In 1968, Criss and Birks proposed the Fundamental 

Parameters (FP) method [6] to calculate the composition 

of a sample analysed by XRF. Their method is as follows. 

As a specimen of the pure analyte i is not always 

available, it is better to rewrite the equation (4) as follows: 

 i Stdi
i is

i Std (i)

II
C M

I I
    (10) 

or 

 (i)i
is i

i Std i Std

II
M C

I I
  

 (11) 

where Ii Std is the measured net intensity of the analyte i in 

a selected standard similar to the unknown samples to be 

analysed. 

The equation (11) has the general form of a straight line: 

 
i i iY m X   

If we plot the calibration line of the Ii  Mis/Ii Std ratio 

(Y axis) as a function of Ci (X axis), the calculated slope 

mi of the line is equivalent to the ratio I(i)/Ii Std. 

In the equation (11), the ratio on the left is measured, 

the Mis factor is calculated by the Sherman equation from 

the composition of the selected standard and Ci is the 

concentration of the analyte i in the standard. The ratio on 

the right is equal to the slope of the calibration line. Thus, 

we can calibrate with a single standard similar to the 

samples to be analysed. 

This way of calibrate has two great advantages. First, as 

the theory is imperfect, we need a scaling factor in order 

to adapt theory to the experimental data of each 

spectrometer, knowing very well that theory cannot 

account for all variations in all the instrumental 

parameters. This factor is the slope of the calibration line, 

which represents the intensity I(i) of the pure analyte. The 

second great advantage is that we do not have to measure 

the intensity of any pure analyte. 

After the calibration, the slope mi is known and 

rearranging the equation (11), each concentration Ci of the 

unknown samples is calculated with 

 i
i is

i i Std

1 I
C M

m I
    (12) 
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In this equation, the Mis factor is calculated with the 

Sherman equation. It has to be calculated by iteration for 

each analyte i in each unknown sample. As Mis depends of 

the composition of the unknown sample, we have to 

calculate a first estimate of the composition as follows: 

If 

 i
i

i i Std

1 I

m I
 R  (13) 

then 

 i
i first

ii

C 


R

R

 (14) 

where Ci first is the first estimate of the concentration i in 

the unknown sample calculated from the measured 

intensities without any matrix effect correction. With the 

equation (14), it is assumed that the first estimate of the 

sample composition is equal to the measured relative 

intensities normalized to 100%. This approach will 

produce accurate results if, and only if, the intensities of 

all the major and minor elements are measured and if the 

composition of the reference standard is very similar to 

the one of unknown samples. 

This method is perfect for the analysis of samples 

having very short concentration ranges and when a 

standard similar to the unknown samples can be found 

easily, as for example, steels. In this case, the Sherman 

equation converges all the time and gives accurate results. 

For geological materials, the analytical context is different 

because the concentration ranges are very large and a 

large variety of standards are then necessary to cover all 

the unknown compositions. Here a solution to solve these 

problems. 

5. Calibration with a Few Standards 

In 1982, Rousseau proposed the Fundamental 

Algorithm to extend the application of the FP method 

[7,8]. Here a summary of his approach. 

The equation (4) can be rewritten as follows: 

 i
i (i)

is

C
I I

M
   (15) 

Dividing on both sides by IiM, the measured gross 

intensity of the analyte i in a drift monitor, gives 

 (i)i i

iM iM is

II C

I I M
 

 (16) 

Again, we have the equation of a straight line having 

the general form 

 
i i i

Y m X   (17) 

If we plot the calibration line of the Ii/IiM ratio (Y axis) 

as a function of Ci/Mis (X axis), the calculated slope mi of 

the line is equal to the ratio I(i)/IiM. 

The combination of equations (7), (16) and (17) leads to 

 i
i i

iM

I
m R

I
   (18) 

Thus, the calibration procedure compares the measured 

relative intensity (Ii/IiM) to the calculated one (Ri). This 

simple, but at the same time, very efficient strategy allows 

comparing measured and calculated relative intensities of 

any standard, no matter their composition. In this case, the 

calibration line is said matrix independent, which is a 

strategy perfectly adapted to the analysis of any geological 

material. 

Equation (16) is the equation of a straight line without 

intercept. However, we can add an intercept bi to take into 

account the subtraction of an incorrect background or 

overlap values from the measured gross intensity. If in 

addition, the ratio I(i)/IiM is replaced by the slope mi of the 

calibration line, we get 

 i i
i i

iM is

I C
m b

I M
    (19) 

Equation (19) is the one to use to perform the 

calibration of any analyte in any geological material. 

Figure 3 shows an example of the type of calibration 

straight line represented by this equation. 

 

Figure 3. Fe calibration graph using NIST alloy standards. The graph of 

measured relative intensities as a function of the concentration CFe gives 

scattered points (o). On the other hand, the plot of the same measured 

relative intensities as a function of the theoretical relative intensities 

calculated by the Sherman equation lines up each point () on the 

calibration line 

This calibration procedure offers many great 

advantages. First, it compares the measured relative 

intensities to the calculated ones. By so doing, the slope 

becomes a scaling factor allowing adapting theory to the 

experimental data of each XRF spectrometer, knowing 

very well that theory cannot account for all variations in 

all the instrumental parameters. This powerful feature 

allows extracting the maximum accuracy from the 

measured XRF intensities. 

Also, the calibration slope is equivalent tot the XRF 

intensity of the pure analyte [I(i)], which means that it is 

not necessary to have to measure any pure analyte 

specimen. 

Furthermore, it is matrix independent, which means that 

the standard compositions do not have to be similar to the 

unknown ones. 

Finally, if the intensities Ii and IiM change with time 

further to the instrumental drift, their ratio remains 

constant. This features guarantees that your calibration 
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data will stay valid for a long period of time, which 

contribute to maintain the accuracy of your results. 

6. Calculation of Concentrations 

For calculating the concentration Ci, the equation (19) 

can be rearranged as: 

 i

i i is

i iM

1 I
C b M

m I
   

 
 
 

 (20) 

This equation shows us that if there are some errors in 

the background calculation, bi is different from zero and 

subtracted from the measured net intensity Ii before being 

corrected for matrix effects by the Mis factor. In addition, 

the intensity Ii is corrected for the instrumental drift by the 

intensity IiM. Finally, the calibration slope mi takes into 

account the imperfections of theory by adapting it to the 

measured data of each spectrometer. We can say then that 

this equation makes physical sense. 

The composition of an unknown sample is calculated 

by applying an iteration process to the equation (20). 

Again, as the Mis factor depends of the composition of the 

unknown sample, we have to calculate a first estimate of 

the composition as follows: 

If 

 i

i i

i iM

1 I
b

m I
  

 
 
 

R  (21) 

then 

i first i ij ijj M j ijk j kj j
k j

C [1 (a a C )C a C C ]


      R
 (22) 

where Ci first is the first estimate of the concentration i in 

the unknown sample calculated from the measured 

intensities modified by the Claisse-Quintin (CQ) 

algorithm to correct for matrix effects [5]. The influence 

coefficients aij, aijj and aijk are constant calculated for a 

representative sample. The matrix concentration CM = 1 – 

Ci. Once that the first estimate of the composition is 

calculated, it is used to calculate once the influence 

coefficients αij and εij within the Fundamental Algorithm: 

 j ij j

i i

j ij j

1 C
C

1 C

 
 

 




R  (23) 

The final composition is calculated by applying an 

iterative process to this algorithm, where all the 

coefficients αij and εij are kept constant. 

It is necessary to use the CQ algorithm to calculate the 

first estimate of the sample composition because it insures 

that the first estimate composition will be quite close to 

the final composition and makes equation (23) converges 

all the time with only a few iterations. Otherwise, the first 

estimate of the composition can be very different of the 

final one and we have no guarantee that the equation (23) 

will converge toward the true final composition. 

This last complete method can be applied using the 

CiROU software written by the author. 

If the concentration ranges of the unknown samples are 

smaller than 10%, as in the case of the determination of 

oxides in rock samples diluted in fused discs, the equation 

(23) can be replaced by 

 
ji i ij j

C (1 a C )  R  (24) 

where the influence coefficient aij is a constant value for a 

series of unknown samples calculated from a representative 

composition by the following equation: 

 
ij ij

ij

ij jm

a
1 C

  


 

 (25) 

where the coefficients αij and εij from the Fundamental 

Algorithm are calculated for the special case of a binary 

standard having a composition (Cim, Cjm) and where Cim is 

the mid-value of the calibration range of the analyte i. The 

Cjm concentration is calculated from 

 jm imC =1-C  (26) 

This last approach introduces some approximations, but 

the calculation method by itself (Eqns 24, 25 and 26) 

introduces a theoretical mean relative error of only 0.02% 

on calculated concentrations when applied to 

concentration ranges smaller than 10% [9]. This last 

complete method can be applied using the CiLT software 

written by the author. 

7. Management of Volatile Components 

For getting the maximum accuracy, geological samples 

are prepared as fused disc. During the preparation, some 

volatile components (CO2, H2O, …) can be lost. Thus, the 

ratio sample/flux is modified and can affect severely the 

results. I am proposing 3 solutions to solve this problem. 

The first analytical context and solution are as follows: 

1. The sample is burned, the LOI value is known and 

the roasted sample is used to prepare the fused disc. 

As example, let us consider the following sample 

composition. Let us assume that there are 10% of volatile 

components: 

 25% + 20% + 15% + 30% + 10% = 100% 

 25% + 20% + 15% + 30% = 100% - 10% 

 25% + 20% + 15% + 30% = 90% 

 27.8% + 22.2% + 16.7% + 33.3% = 100% 

As we do LOI before the fusion, there is no loss during 

the fusion and the last composition is the new one of the 

sample to analyze. After the calculation of the concentrations 

with the equation (27), we have to reduce the 

concentrations with the factor (1-LOI) to bring them to 

their original values. 

 
i i ij jj

C R [1 a C ] (1 LOI)     (27) 

The second analytical context and solution are as 

follows: 

2. The sample is burned, the LOI value is known and 

the original sample is used to prepare the fused disc. 

In this case, there is a loss of volatiles components 

during the fusion, the sample/flux ratio varies and the 

concentrations in the specimen increase. In this case, they 

are reduced by adding a giv coefficient to the equation 

(28), which is always a negative value and where Cv = 

LOI. 

 i i iV V ij jj
C R [1 g C a C ]    (28) 
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The coefficient giv is calculated from the Sherman 

equation and takes into account the change of the 

sample/flux ratio due to the loss of volatile components. 

Presently, the calculation of the giv coefficient is 

confidential. 

The third analytical context and solution are as follows: 

3. The LOI value is unknown and the original sample 

is used to prepare the fused disc. 

In this case, the LOI value is unknown and the 

concentrations are calculated by the equation (29), where 

the Cv concentration term has been suppressed. 

 ij iViV i
i jj

iV i iV

a g(1 g )R
C 1 C

1 g R 1 g

 
   

  
  (29) 

Then, the Cv concentration is calculated by difference 

with the following equation: 

 
V ii

C 1 C   (30) 

Once the Cv concentration is known, the final concentrations 

are calculated with the equation (28). 

8. Experimental Results 

Let us see now some practical results obtained with the 

proposed method. After having analyzed more than 

160,000 geological samples on a period of more than 36 

years at the Geological Survey of Canada, I can say that 

the accuracy of results remains unsurpassed. See some 

calculated compositions of geological samples at Table 1. 

Table 1. List of some sample compositions calculated with the proposed method 

REPORT OF XRF ANALYSIS 

 (CONCENTRATIONS IN %)  DATE: 2011/12/10 

SPL. NU. NA2O MgO Al2O3 SIO2 P2O5 SO3 K2O CAO 

 TIO2 CR2O3 MNO FE2O3 NIO CUO ZNO RB2O 

 SRO Y2O3 ZRO2 NB2O5 BAO PBO   

 CO2T H2OT FEO S     

     

08-007 CODE: 2 LOI: 8.0 OTHER VOL: 1.3  SPECIMEN TOTAL: 100.88 

80 1.7512 4.2890 12.1828 63.0124 0.1270 0.0260 3.4351 4.3934 

 0.4757 0.0083 0.1090 2.7975 0.0023 0.0430 0.0049 0.0156 

 0.0096 0.0056 0.0639 0.0018 0.0600 0.0000   

 6.7000 999.000 999.000 0.0000     

    FE2O3T: 2.7975 TOTAL: 100.79 

     

08-007 CODE: 2 LOI: 2.8 OTHER VOL: 2.1  SPECIMEN TOTAL: 100.60 

81 1.0315 2.5443 16.0226 69.4772 0.0839 0.0000 5.6558 0.1010 

 0.5241 0.0036 0.0000 2.1595 0.0008 0.0214 0.0051 0.0237 

 0.0033 0.0039 0.0444 0.0022 0.0786 0.0000   

 0.7000 999.000 999.000 0.0000     

    FE2O3T: 2.1595 TOTAL: 100.59 

     

08-007 CODE: 2 LOI: 0.3 OTHER VOL: 0.1  SPECIMEN TOTAL: 100.74 

82 0.0000 0.2713 1.8508 95.6393 0.0239 0.0000 0.8636 0.0343 

 0.0000 0.0496 0.0000 1.6639 0.0015 0.0155 0.0009 0.0046 

 0.0023 0.0019 0.0059 0.0011 0.0108 0.0000   

 0.2000 999.000 999.000 0.0000     

    FE2O3T: 1.6639 TOTAL: 100.74 

     

08-007 CODE: 2 LOI:4.4 OTHER VOL: 3.9  SPECIMEN TOTAL: 100.98 

84 0.4231 0.8631 20.8226 58.9716 0.1225 0.0000 6.4793 0.2121 

 0.8320 0.0150 0.0875 7.5359 0.0070 0.0168 0.0128 0.0263 

 0.0078 0.0047 0.0246 0.0026 0.0983 0.0000   

 0.5000 999.000 999.000 0.0000     

    FE2O3T: 7.5359 TOTAL: 100.94 

     

08-007 CODE: 2 LOI: 33.4 OTHER VOL: 999.9  SPECIMEN TOTAL: 98.10 

86 0.0000 14.4314 3.6577 22.1398 0.0587 0.0607 1.0617 21.5594 

 0.1794 0.0000 0.1381 2.0488 0.0000 0.0061 0.0006 0.0049 

 0.0043 0.0015 0.0152 0.0005 0.0069 0.0000   

 33.7000 999.000 999.000 0.0700     

    FE2O3T: 2.0488 TOTAL: 99.09 

     

08-007 CODE: 2 LOI: 0.1 OTHER VOL: 999.9  SPECIMEN TOTAL: 100.61 

87 0.0000 0.1126 0.7081 98.4653 0.0098 0.0352 0.2763 0.0121 

 0.0055 0.0620 0.0000 0.8379 0.0016 0.0185 0.0008 0.0029 

 0.0028 0.0004 0.0062 0.0011 0.0036 0.0000   

 0.2000 999.000 999.000 0.0000     

    FE2O3T: 0.8379 TOTAL: 100.73 

In these samples, the concentration of SiO2 varies from 

22% to 98%. In spite of that, the total of the calculated 

compositions is always equal to 100% ± 1% without doing 

any normalization. For an XRF analyst, it is a real 

satisfaction to get such accurate results, day after day, 

sample after sample, no matter their compositions. 
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9. Conclusion 

The proposed method is the synthesis of the best 

features of all the methods developed during 30 years, 

from 1955 to 1985. 

It allows getting the maximum accuracy from the 

measured XRF intensities because of its unique 

calculation method, calibration procedure and the 

management of volatile components. 

It is valid for large concentration ranges of diluted 

geological samples. 

The accuracy of results depends only on the quality of 

sample preparation and the standards used. 
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